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  abstract = {Differentiable renderers have been used successfully for unsupervised 3D structure learning from 2D images because they can bridge the gap between 3D and 2D. To optimize 3D shape parameters, current renderers rely on pixel-wise losses between rendered images of 3D reconstructions and ground truth images from corresponding viewpoints. Hence they require interpolation of the recovered 3D structure at each pixel, visibility handling, and optionally evaluating a shading model. In contrast, here we propose a Differentiable Renderer Without Rendering (DRWR) that omits these steps. DRWR only relies on a simple but effective loss that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object silhouette. Specifically, DRWR employs a smooth silhouette loss to pull the projection of each individual 3D point inside the object silhouette, and a structure-aware repulsion loss to push each pair of projections that fall inside the silhouette far away from each other. Although we omit surface interpolation, visibility handling, and shading, our results demonstrate that DRWR achieves state-of-the-art accuracies under widely used benchmarks, outperforming previous methods both qualitatively and quantitatively. In addition, our training times are significantly lower due to the simplicity of DRWR.},
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  abstract = {Advanced microscopy enables us to acquire quantities of time-lapse images to visualize the dynamic charac teristics of tissues, cells or molecules. Microscopy images typically vary in signal-to-noise ratios and include a wealth of information which require multiple parameters and time-consuming iterative algorithms for pro cessing. Precise analysis and statistical quantification are often needed for the understanding of the biological mechanisms underlying these dynamic image sequences, which has become a big challenge in the field. As deep learning technologies develop quickly, they have been applied in bioimage processing more and more frequently. Novel deep learning models based on convolution neural networks have been developed and illustrated to achieve inspiring outcomes. This review article introduces the applications of deep learning algorithms in mi croscopy image analysis, which include image classification, region segmentation, object tracking and superresolution reconstruction. We also discuss the drawbacks of existing deep learning-based methods, especially on the challenges of training datasets acquisition and evaluation, and propose the potential solutions. Further more, the latest development of augmented intelligent microscopy that based on deep learning technology may lead to revolution in biomedical research.},
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  abstract = {Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate differentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new auto-differentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.},
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  abstract = {In optical serial sectioning, the 3-D structure of a microscopic specimen is observed by incrementing the focusing plane of a light microscope through the specimen. If the depth of field of the microscope is infinitesimal, the image obtained from each focusing plane is an in-focus slice of the optical density of the specimen. The authors show that the finite aperture of any practical microscope inevitably results in the loss of a biconic region of frequencies in the 3-D Fourier spectrum of the optical density, oriented in the direction of the optical axis. Thus, the resolution along this axis is severely reduced. Outside the missing cone of frequencies, the spectrum is distorted by a strong low-pass effect. A closed form expression is obtained for the overall distortion function using principles of geometric optics, and by assuming that the absorption of the specimen is linear and nondiffractive. Methods for restoring the 3-D images obtained through optical serial sectioning are considered, and several examples are provided.{$<>$}},
  eventtitle = {{{ICASSP-88}}., {{International Conference}} on {{Acoustics}}, {{Speech}}, and {{Signal Processing}}},
  keywords = {Apertures,Biomedical optical imaging,Computer vision,Focusing,Frequency,Geometrical optics,Optical distortion,Optical losses,Optical microscopy,Optical recording},
  file = {/home/oni/Zotero/storage/IGIYMDDB/Macias-Garza et al. - 1988 - The missing cone problem and low-pass distortion i.pdf;/home/oni/Zotero/storage/QNANDL6F/196731.html}
}

@article{mahecicHomogeneousMultifocalExcitation2020b,
  title = {Homogeneous Multifocal Excitation for High-Throughput Super-Resolution Imaging},
  author = {Mahecic, Dora and Gambarotto, Davide and Douglass, Kyle M. and Fortun, Denis and Banterle, Niccoló and Ibrahim, Khalid A. and Le Guennec, Maeva and Gönczy, Pierre and Hamel, Virginie and Guichard, Paul and Manley, Suliana},
  date = {2020-07},
  journaltitle = {Nature Methods},
  shortjournal = {Nat Methods},
  volume = {17},
  number = {7},
  pages = {726--733},
  publisher = {{Nature Publishing Group}},
  issn = {1548-7105},
  doi = {10.1038/s41592-020-0859-z},
  url = {https://www.nature.com/articles/s41592-020-0859-z},
  abstract = {Super-resolution microscopies have become an established tool in biological research. However, imaging throughput remains a main bottleneck in acquiring large datasets required for quantitative biology. Here we describe multifocal flat illumination for field-independent imaging (mfFIFI). By integrating mfFIFI into an instant structured illumination microscope (iSIM), we extend the field of view (FOV) to {$>$}100\,×\,100\,µm2 while maintaining high-speed, multicolor, volumetric imaging at double the diffraction-limited resolution. We further extend the effective FOV by stitching adjacent images for fast live-cell super-resolution imaging of dozens of cells. Finally, we combine our flat-fielded iSIM with ultrastructure expansion microscopy to collect three-dimensional (3D) images of hundreds of centrioles in human cells, or thousands of purified Chlamydomonas reinhardtii centrioles, per hour at an effective resolution of \textasciitilde 35\,nm. Classification and particle averaging of these large datasets enables 3D mapping of posttranslational modifications of centriolar microtubules, revealing differences in their coverage and positioning.},
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  abstract = {Reconstructing a high-resolution 3D model of an object is a challenging task in computer vision. Designing scalable and light-weight architectures is crucial while addressing this problem. Existing point-cloud based reconstruction approaches directly predict the entire point cloud in a single stage. Although this technique can handle low-resolution point clouds, it is not a viable solution for generating dense, high-resolution outputs. In this work, we introduce DensePCR, a deep pyramidal network for point cloud reconstruction that hierarchically predicts point clouds of increasing resolution. Towards this end, we propose an architecture that first predicts a low-resolution point cloud, and then hierarchically increases the resolution by aggregating local and global point features to deform a grid. Our method generates point clouds that are accurate, uniform and dense. Through extensive quantitative and qualitative evaluation on synthetic and real datasets, we demonstrate that DensePCR outperforms the existing state-of-the-art point cloud reconstruction works, while also providing a light-weight and scalable architecture for predicting high-resolution outputs.},
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  abstract = {We propose an efficient method for approximating natural gradient descent in neural networks which we call Kronecker-Factored Approximate Curvature (K-FAC). K-FAC is based on an efficiently invertible approximation of a neural network's Fisher information matrix which is neither diagonal nor low-rank, and in some cases is completely non-sparse. It is derived by approximating various large blocks of the Fisher (corresponding to entire layers) as being the Kronecker product of two much smaller matrices. While only several times more expensive to compute than the plain stochastic gradient, the updates produced by K-FAC make much more progress optimizing the objective, which results in an algorithm that can be much faster than stochastic gradient descent with momentum in practice. And unlike some previously proposed approximate natural-gradient/Newton methods which use high-quality non-diagonal curvature matrices (such as Hessian-free optimization), K-FAC works very well in highly stochastic optimization regimes. This is because the cost of storing and inverting K-FAC's approximation to the curvature matrix does not depend on the amount of data used to estimate it, which is a feature typically associated only with diagonal or low-rank approximations to the curvature matrix.},
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  abstract = {The purpose of this paper is to correct a misconception about convolutional neural networks (CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight sharing. However, contrary to popular belief, convolutional layers are not translation equivariant, even when boundary effects are ignored and when pooling and subsampling are absent. This is because shift equivariance is a discrete symmetry while translation equivariance is a continuous symmetry. That discrete systems do not in general inherit continuous equivariances is a fundamental limitation of equivariant deep learning. We discuss two implications of this fact. First, CNNs have achieved success in image processing despite not inheriting the translation equivariance of the physical systems they model. Second, using CNNs to solve partial differential equations (PDEs) will not result in translation equivariant solvers.},
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  abstract = {We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.},
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  abstract = {Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods.},
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  abstract = {Cryo-electron microscopy (cryo-EM) is increasingly becoming a mainstream technology for studying the architecture of cells, viruses and protein assemblies at molecular resolution. Recent developments in microscope design and imaging hardware, paired with enhanced image processing and automation capabilities, are poised to further advance the effectiveness of cryo-EM methods. These developments promise to increase the speed and extent of automation, and to improve the resolutions that may be achieved, making this technology useful to determine a wide variety of biological structures. Additionally, established modalities for structure determination, such as X-ray crystallography and nuclear magnetic resonance spectroscopy, are being routinely integrated with cryo-EM density maps to achieve atomic-resolution models of complex, dynamic molecular assemblies. In this review, which is directed towards readers who are not experts in cryo-EM methodology, we provide an overview of emerging themes in the application of this technology to investigate diverse questions in biology and medicine. We discuss the ways in which these methods are being used to study structures of macromolecular assemblies that range in size from whole cells to small proteins. Finally, we include a description of how the structural information obtained by cryo-EM is deposited and archived in a publicly accessible database.},
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  abstract = {Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning problems such as image recognition. Although these methods perform impressively well, they have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network architectures. Our method called deep Taylor decomposition efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.},
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  abstract = {A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.},
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  abstract = {Advances in functional brain imaging now allow sustained rapid 3D visualization of large numbers of neurons inside behaving animals. To decode circuit activity, imaged neurons must be individually segmented and tracked. This is particularly challenging when the brain itself moves and deforms inside a flexible body. The field has lacked general methods for solving this problem effectively. To address this need, we developed a method based on a convolutional neural network (CNN) Awith specific enhancements which we apply to freely moving Caenorhabditis elegans. For a traditional CNN to track neurons across images of a brain with different postures, the CNN must be trained with ground truth (GT) annotations of similar postures. When these postures are diverse, an adequate number of GT annotations can be prohibitively large to generate manually. We introduce ‘targeted augmentation’, a method to automatically synthesize reliable annotations from a few manual annotations. Our method effectively learns the internal deformations of the brain. The learned deformations are used to synthesize annotations for new postures by deforming the manual annotations of similar postures in GT images. The technique is germane to 3D images, which are generally more difficult to analyze than 2D images. The synthetic annotations, which are added to diversify training datasets, drastically reduce manual annotation and proofreading. Our method is effective both when neurons are represented as individual points or as 3D volumes. We provide a GUI that incorporates targeted augmentation in an end-to-end pipeline, from manual GT annotation of a few images to final proofreading of all images. We apply the method to simultaneously measure activity in the second-layer interneurons in C. elegans: RIA, RIB, and RIM, including the RIA neurite. We find that these neurons show rich behaviors, including switching entrainment on and off dynamically when the animal is exposed to periodic odor pulses.Competing Interest StatementThe authors have declared no competing interest.}
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  abstract = {Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In this work, we introduce DeepSDF, a learned continuous Signed Distance Function (SDF) representation of a class of shapes that enables high quality shape representation, interpolation and completion from partial and noisy 3D input data. DeepSDF, like its classical counterpart, represents a shape’s surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape, hence our representation implicitly encodes a shape’s boundary as the zero-level-set of the learned function while explicitly representing the classification of space as being part of the shapes’ interior or not. While classical SDF’s both in analytical or discretized voxel form typically represent the surface of a single shape, DeepSDF can represent an entire class of shapes. Furthermore, we show stateof-the-art performance for learned 3D shape representation and completion while reducing the model size by an order of magnitude compared with previous work.},
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  abstract = {Responsiveness to external cues is a hallmark of biological systems. In complex environments, it is crucial for organisms to remain responsive to specific inputs even as other internal or external factors fluctuate. Here, we show how the nematode Caenorhabditis elegans can discriminate between different food levels to modulate its lifespan despite temperature perturbations. This end-to-end robustness from environment to physiology is mediated by food-sensing neurons that communicate via transforming growth factor b (TGF-b) and serotonin signals to form a multicellular gene network. Specific regulations in this network change sign with temperature to maintain similar food responsiveness in the lifespan output. In contrast to robustness of stereotyped outputs, our findings uncover a more complex robustness process involving the higher order function of discrimination in food responsiveness. This process involves rewiring a multicellular network to compensate for temperature and provides a basis for understanding gene-environment interactions. Together, our findings unveil sensory computations that integrate environmental cues to govern physiology.},
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  abstract = {This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. • Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry • A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking • More than 70 algorithms are described in sufficient detail to implement • More than 350 full-color illustrations amplify the text • The treatment is self-contained, including all of the background mathematics • Additional resources at www.computervisionmodels.com},
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  abstract = {\&\#x201C;How thick is your light sheet?\&\#x201D; is a question that has been asked frequently after talks showing impressive renderings of 3D data acquired by a light-sheet microscope. This question is motivated by the fact that most of the time the thickness of the light-sheet is uniquely associated to the axial resolution of the microscope. However, the link between light-sheet thickness and axial resolution has never been systematically assessed and it is still unclear how both are connected. The question is not trivial because commonly employed measures cannot readily be applied or do not lead to easily interpretable results for the many different types of light sheet. Here, we introduce a set of intuitive measures that helps to define the relationship between light sheet thickness and axial resolution by using simulation data. Unexpectedly, our analysis revealed a trade-off between better axial resolution and thinner light-sheet thickness. Our results are surprising because thicker light-sheets that provide lower image contrast have previously not been associated with better axial resolution. We conclude that classical Gaussian illumination beams should be used when image contrast is most important, and more advanced types of illumination represent a way to optimize axial resolution at the expense of image contrast.},
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  abstract = {An iterative method of restoring degraded images was developed by treating images, point spread functions, and degraded images as probability-frequency functions and by applying Bayes’s theorem. The method functions effectively in the presence of noise and is adaptable to computer operation.},
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  abstract = {There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.},
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  abstract = {We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.},
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  abstract = {Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov–Miller, Richardson–Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.},
  langid = {english},
  keywords = {Deconvolution microscopy,Open-source software,Reference datasets,Standard algorithms,Textbook approach},
  file = {/home/oni/Zotero/storage/YPLVHPL4/Sage et al. - 2017 - DeconvolutionLab2 An open-source software for dec.pdf;/home/oni/Zotero/storage/EBMWIIKS/S1046202316305096.html}
}

@article{salasAngularReconstitutionbased3D2017a,
  title = {Angular Reconstitution-Based {{3D}} Reconstructions of Nanomolecular Structures from Superresolution Light-Microscopy Images},
  author = {Salas, Desirée and Le Gall, Antoine and Fiche, Jean-Bernard and Valeri, Alessandro and Ke, Yonggang and Bron, Patrick and Bellot, Gaetan and Nollmann, Marcelo},
  date = {2017-08-29},
  journaltitle = {Proceedings of the National Academy of Sciences},
  shortjournal = {Proc Natl Acad Sci USA},
  volume = {114},
  number = {35},
  pages = {9273--9278},
  issn = {0027-8424, 1091-6490},
  doi = {10.1073/pnas.1704908114},
  url = {http://www.pnas.org/lookup/doi/10.1073/pnas.1704908114},
  abstract = {Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions.},
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  abstract = {Fully convolutional deep neural networks carry out excellent potential for fast and accurate image segmentation. One of the main challenges in training these networks is data imbalance, which is particularly problematic in medical imaging applications such as lesion segmentation where the number of lesion voxels is often much lower than the number of non-lesion voxels. Training with unbalanced data can lead to predictions that are severely biased towards high precision but low recall (sensitivity), which is undesired especially in medical applications where false negatives are much less tolerable than false positives. Several methods have been proposed to deal with this problem including balanced sampling, two step training, sample re-weighting, and similarity loss functions. In this paper, we propose a generalized loss function based on the Tversky index to address the issue of data imbalance and achieve much better trade-off between precision and recall in training 3D fully convolutional deep neural networks. Experimental results in multiple sclerosis lesion segmentation on magnetic resonance images show improved \$\$F\_2\$\$score, Dice coefficient, and the area under the precision-recall curve in test data. Based on these results we suggest Tversky loss function as a generalized framework to effectively train deep neural networks.},
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  abstract = {We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning.},
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  abstract = {With the broader and highly successful usage of machine learning (ML) in industry and the sciences, there has been a growing demand for explainable artificial intelligence (XAI). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “post hoc” explanations, and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of ML.},
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  abstract = {Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM.},
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  abstract = {The Gaussian function is simple and easy to implement as Point Spread Function (PSF) model for fitting the position of fluorescent emitters in localization microscopy. Despite its attractiveness the appropriateness of the Gaussian is questionable as it is not based on the laws of optics. Here we study the effect of emission dipole orientation in conjunction with optical aberrations on the localization accuracy of position estimators based on a Gaussian model PSF. Simulated image spots, calculated with all effects of high numerical aperture, interfaces between media, polarization, dipole orientation and aberrations taken into account, were fitted with a Gaussian PSF based Maximum Likelihood Estimator. For freely rotating dipole emitters it is found that the Gaussian works fine. The same, theoretically optimum, localization accuracy is found as if the true PSF were a Gaussian, even for aberrations within the usual tolerance limit of high-end optical imaging systems such as microscopes (Marechal’s diffraction limit). For emitters with a fixed dipole orientation this is not the case. Localization errors are found that reach up to 40 nm for typical system parameters and aberration levels at the diffraction limit. These are systematic errors that are independent of the total photon count in the image. The Gaussian function is therefore inappropriate, and more sophisticated PSF models are a practical necessity.},
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  abstract = {Poring Over the Nuclear Pore                            The nuclear pore is a macromolecular complex that traverses the paired membranes of the nuclear envelope through which a variety of nuclear protein and RNA cargoes must traffic.                                Szymborska                 et al.                              (p.               655               , published online 11 July) combined super-resolution microscopy with single-particle averaging to localize the proteins that make up the structural scaffold of the nuclear pore complex with a precision well below one nanometer. These molecular positional constraints clarified contradictory models for the structure of the nuclear pore and demonstrate that the structural organization of protein complexes can be studied by light microscopy in situ in whole cells.                        ,              The localization of individual components of the nuclear pore complex was dissected using information from thousands of pores.           ,              Much of life’s essential molecular machinery consists of large protein assemblies that currently pose challenges for structure determination. A prominent example is the nuclear pore complex (NPC), for which the organization of its individual components remains unknown. By combining stochastic super-resolution microscopy, to directly resolve the ringlike structure of the NPC, with single particle averaging, to use information from thousands of pores, we determined the average positions of fluorescent molecular labels in the NPC with a precision well below 1 nanometer. Applying this approach systematically to the largest building block of the NPC, the Nup107-160 subcomplex, we assessed the structure of the NPC scaffold. Thus, light microscopy can be used to study the molecular organization of large protein complexes in situ in whole cells.},
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  abstract = {We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other stateof-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines.},
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  abstract = {In computerized tomography as well as in most problems of three-dimensional reconstruction from projections, one knows from the experimental set-up the angular relationships between the projections from which the reconstruction is to be calculated. A serious difficulty is encountered when the angles are not known. In this paper, a method of “angular reconstitution” is described, which allows the a posteriori determination of the relative angular orientations of the projections and thus enables the three-dimensional reconstruction of the object to be calculated. For asymmetric objects, a minimum of three projections is required, which should not be related by a tilt around a single rotation axis. The method can be applied to determine the three-dimensional structure of biological macromolecules based on electron micrographs of randomly oriented individual molecules. Angular reconstitution, in combination with multivariate statistical techniques to classify and average the characteristic views of a molecule forms a complete, self-contained methodology for molecular structure analysis by electron microscopy.},
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  abstract = {The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.},
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  abstract = {Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a “toolbox” of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map.},
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  abstract = {Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.},
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  abstract = {Microscopes have been used for more than 400 years to understand biological and biomedical processes by visual observation. Science is the art of observing, but science also requires measuring, or quantifying, what is observed. Research based on microscopy image data therefore calls for methods for quantitative, unbiased, and reproducible extraction of meaningful measurements describing what is observed. Digital image processing and analysis is based on mathematical models of the information contained in image data, and allows for automated extraction of quantitative measurements. Automated methods are reproducible and, if applied consistently and accurately across experiments with positive as well as negative controls, also unbiased. Digital image processing is further motivated by the development of scanning microscopes and digital cameras that can capture image data in multiple spatial-, time-, and spectral-dimensions, making visual assessment cumbersome or even impossible due to the complexity and size of the collected data.},
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  abstract = {An automatic thresholding method based on Shannon entropy difference and dynamic synergic entropy is proposed to select a reasonable threshold from the gray level image with a unimodal, bimodal, multimodal, or peakless gray level histogram. Firstly, a new concept called Shannon entropy difference is proposed, and the stopping condition of a multi-scale multiplication transformation is automatically controlled by maximizing Shannon entropy difference to produce edge images. Secondly, the gray level image is thresholded by the gray levels in order from smallest to largest to generate a series of binary images, followed by extracting contour images from the binary images. Then, a series of gray level histograms that can dynamically reflect gray level distributions and pixel positions are constructed using the edge images and the contour images synergically. Finally, dynamic synergic Shannon entropy is calculated from this series of gray level histograms, and the threshold corresponding to maximum dynamic synergic entropy is taken as the final segmentation threshold. The experimental results on 40 synthetic images and 50 real-world images show that, although the proposed method is not superior to 8 automatic segmentation methods in computational efficiency, it has more flexible adaptivity of selecting threshold and better segmentation accuracy.},
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\RequirePackage{ifpdf}    % Check for pdfLaTeX
\RequirePackage{ifxetex}  % XeLaTeX

% *********************** Table of Contents & Appendices ***********************
% add Bibliography, List of figures and tables to contents
\RequirePackage[nottoc]{tocbibind}
% Add appendices
\RequirePackage[title,titletoc]{appendix}

\renewcommand{\contentsname}{Table of contents}
\renewcommand{\listfigurename}{List of figures}
\renewcommand{\listtablename}{List of tables}

% Hides Contents appearing from TOC, but adds it to bookmarks
\let\temptableofcontents\tableofcontents
\renewcommand{\tableofcontents}{
  \cleardoublepage
  \pdfbookmark[0]{\contentsname}{Contents}
  \temptableofcontents
}

% *************************** Graphics and Figures *****************************
\RequirePackage[usenames, dvipsnames]{color}
\ifpdf
  % Convert eps figures to pdf
  \RequirePackage{epstopdf}
  \RequirePackage[pdftex]{graphicx}
  \DeclareGraphicsExtensions{.png, .jpg, .pdf}
  \pdfcompresslevel=9
  \graphicspath{{Figs/Raster/}{Figs/}}
\else
  \RequirePackage{graphicx}
  \DeclareGraphicsExtensions{.eps, .ps}
  \graphicspath{{Figs/Vector/}{Figs/}}
\fi



% ******************************* Time Stamp ***********************************
% Compute the timestamp based on an idea of
% Tim Piessens \texttt{<Tim.Piessens@esat.kuleuven.ac.be>}.

\RequirePackage{datetime}

\newcount\PHD@hour \newcount\PHD@minute
\PHD@hour=\time
\divide \PHD@hour by 60
\PHD@minute=\time
\count@=\PHD@hour
\multiply \count@ by -60
\advance \PHD@minute by \count@
\newcommand{\PHD@daytime}{%
  \today\space--\space%
  \ifnum\PHD@hour=0 00\else\ifnum\PHD@hour<10 0\fi%
  \number\PHD@hour\fi:\ifnum\PHD@minute<10 0\fi\number\PHD@minute
}

% ******************************* Draft Mode ***********************************
% Initializing Draft Text
\newcommand\SetDraftText[1]{}
% Initializing Draft Version
\newcommand\SetDraftVersion[1]{}
% Initializing Draft Content
\newcommand\SetDraftWMPosition[1]{}
% Initializing Draft Gray Scale
\newcommand\SetDraftGrayScale[1]{}

% Classic Draft Mode
\ifsetDraftClassic
% Disable figures in `draft'\
\setkeys{Gin}{draft=true}
\fi

% If Draft Mode is active
\ifsetDraft
% Disable figures in `draft'\
\setkeys{Gin}{draft=false}

% Line numbering (can be switched off)
\ifPHD@lineno
\RequirePackage[switch,pagewise,mathlines]{lineno}
\renewcommand{\frontmatter}{%
  \cleardoublepage
  \@mainmatterfalse
  \pagenumbering{roman}
  \nolinenumbers
}
\renewcommand{\mainmatter}{%
  \cleardoublepage
  \@mainmattertrue
  \pagenumbering{arabic}
  \linenumbers
}
\renewcommand{\backmatter}{%
  \if@openright
    \cleardoublepage
  \else
    \clearpage
  \fi
  \@mainmatterfalse
  \linenumbers
}

% Fix display lineno issue in mathmode
\newcommand*\patchAmsMathEnvironmentForLineno[1]{%
  \expandafter\let\csname old#1\expandafter\endcsname\csname #1\endcsname
  \expandafter\let\csname oldend#1\expandafter\endcsname\csname end#1\endcsname
  \renewenvironment{#1}%
     {\linenomath\csname old#1\endcsname}%
     {\csname oldend#1\endcsname\endlinenomath}%
}% 

\newcommand*\patchBothAmsMathEnvironmentsForLineno[1]{%
  \patchAmsMathEnvironmentForLineno{#1}%
  \patchAmsMathEnvironmentForLineno{#1*}%
}%

\AtBeginDocument{%
  \patchBothAmsMathEnvironmentsForLineno{equation}%
  \patchBothAmsMathEnvironmentsForLineno{align}%
  \patchBothAmsMathEnvironmentsForLineno{flalign}%
  \patchBothAmsMathEnvironmentsForLineno{alignat}%
  \patchBothAmsMathEnvironmentsForLineno{gather}%
  \patchBothAmsMathEnvironmentsForLineno{multline}%
}

\fi % End \ifPDH@lineno

% Creates a Watermark Draft at the specified location.
% The settings can be tweaked in the preamble

% Draft text
\newcommand\drafttext{Draft}
\renewcommand\SetDraftText[1]{%
  \renewcommand\drafttext{#1}
}

% Draft Version
\newcommand\draftVersion{v1.0}
\renewcommand\SetDraftVersion[1]{%
  \renewcommand\draftVersion{#1}
}

% Draft Gray Scale
\newcommand\draftGrayScale{0.75}
\renewcommand\SetDraftGrayScale[1]{%
  \renewcommand\draftGrayScale{#1}
}

% Draft Content
\newcommand\DraftContent{%
  \hspace*{\fill}
  \Large
  \textcolor[gray]{\draftGrayScale}{%
    {\drafttext}\space-\space{\draftVersion}\hspace{\stretch{1}}{\PHD@daytime}
    \hspace*{\fill}
  }
}

% Adding watermark in draft mode with time stamp
\RequirePackage{everypage}
\RequirePackage[absolute]{textpos}
% Default values for draft watermark
\newcommand\draftposition{top}
\newcommand\draftnodeanchor{1in+\voffset-\topmargin}
\AddEverypageHook{%
  \begin{textblock*}{\paperwidth}[0.,2.5](0\paperwidth,\draftnodeanchor)
    \DraftContent
  \end{textblock*}
}

% Conditional evaluation to position the draft water mark  (top / bottom)
\renewcommand\SetDraftWMPosition[1]{%
  \renewcommand\draftposition{#1}
  \ifthenelse{\equal{\draftposition}{bottom}}
    {\renewcommand\draftnodeanchor{\paperheight-\voffset}} %Bottom
    {\ifthenelse{\equal{\draftposition}{top}}
      {\renewcommand\draftnodeanchor{1in+\voffset-\topmargin}} %Top
      {\ClassWarning{PDThesisPSnPDF}{Unrecognised draft position
          using default value of top}
        \renewcommand\draftnodeanchor{1in+\voffset-\topmargin}}} %Top
    
    \AddEverypageHook{%
    \begin{textblock*}{\paperwidth}[0.,2.5](0\paperwidth,\draftnodeanchor)
      \DraftContent
    \end{textblock*}
  }
}

% If NOT Draft
\else 

\renewcommand\SetDraftText[1]{\ClassWarning{PhDThesisPSnPDF}{Draft is
    inactive, to use SetDraftText include `draft' in the document 
    class options.}}
% Draft Version
\renewcommand\SetDraftVersion[1]{\ClassWarning{PhDThesisPSnPDF}{Draft is
    inactive, to use SetDraftVersion include `draft' in the document
    class options.}}
% Draft Content
\renewcommand\SetDraftWMPosition[1]{\ClassWarning{PhDThesisPSnPDF}{Draft
    is inactive, to use SetDraftWMPosition include `draft' in the document
    class options.}}

\renewcommand\SetDraftGrayScale[1]{\ClassWarning{PhDThesisPSnPDF}{Draft is
    inactive, to use SetDraftWMPosition include `draft' in the document
    class options.}}
\fi



% ********************************** Fonts **********************************
\RequirePackage{textcomp}
% Font Selection
\ifPHD@times
  \ifxetex
  \else
    \RequirePackage{mathptmx}  % times roman, including math (where possible)
  \fi
  \setFonttrue
  \message{PhDThesisPSnPDF: Using Times Roman font}
\else
  \ifPHD@fourier
    \RequirePackage{fourier} % Fourier
    \setFonttrue
    \message{PhDThesisPSnPDF: Using Fourier font}
  \else
    \ifsetCustomFont
      \setFonttrue
      \message{PhDThesisPSnPDF: Using custom font}
    \else
      \setFontfalse
      \message{PhDThesisPSnPDF: No font is set}
    \fi % custom font
  \fi % Fourier font
\fi % Times font

% If Font is not set throw a warning.
\ifsetFont
\else
  \ClassWarning{PhDThesisPSnPDF}{Using default font Latin Modern. If you
    would like to use other pre-defined fonts use `times' (The Cambridge 
    University PhD thesis guidelines recommend using Times font)  or `fourier'
    or load a custom font in the preamble.tex file by specifying `customfont' 
    in the class options}
  \RequirePackage{lmodern}
\fi


\ifxetex
  % XeLaTeX
  \usepackage{amsmath}
  \usepackage{fontspec}
  \usepackage[]{unicode-math}
  \setmainfont[
    Extension = .otf,
    UprightFont = *-Regular,
    BoldFont = *-Bold,
    ItalicFont = *-Italic,
    BoldItalicFont = *-BoldItalic,
  ]{XITS}
  
  \setmathfont[ 
    Extension = .otf,
    BoldFont = XITSMath-Bold,
  ]{XITSMath-Regular}
  
\else
  % default: pdfLaTeX
  \RequirePackage[utf8]{inputenc}
  \RequirePackage[T1]{fontenc}
  
  % If building with PDFLaTeX, use microtype spacing adjustments
  \RequirePackage[final]{microtype}
  
  \input{glyphtounicode}
  \pdfglyphtounicode{f_f}{FB00}
  \pdfglyphtounicode{f_i}{FB01}
  \pdfglyphtounicode{f_l}{FB02}
  \pdfglyphtounicode{f_f_i}{FB03}
  \pdfglyphtounicode{f_f_l}{FB04}
  \pdfgentounicode=1

  \RequirePackage{amsfonts}
  \RequirePackage{amsmath}
  \RequirePackage{amssymb}
\fi

% Don't break enumeration (etc.) across pages in an ugly manner
\clubpenalty=10000
\widowpenalty=10000

%******************************* Print / Online ********************************
% Defines a print / online version to define page-layout and hyperrefering

% Moved below other usepackage definitions to fix PDFLaTeX footnote warning
% Based on the suggestion by John Plaice

\RequirePackage[unicode=true]{hyperref}

\if@print
  % For Print version
  \hypersetup{
    final=true,
    plainpages=false,
    pdfstartview=FitV,
    pdftoolbar=true,
    pdfmenubar=true,
    bookmarksopen=true,
    bookmarksnumbered=true,
    breaklinks=true,
    linktocpage,
    colorlinks=true,
    linkcolor=black,
    urlcolor=black,
    citecolor=black,
    anchorcolor=black
  }
  \ifsetCustomMargin
  % Margin to be define in preamble using geometry package
  \else
    \RequirePackage[paper=\PHD@papersize,hmarginratio=1:1,
      vmarginratio=1:1,scale=0.75,bindingoffset=5mm]{geometry}
  \fi

  \if@twoside
    \hypersetup{pdfpagelayout=TwoPageRight}
  \else
    \hypersetup{pdfpagelayout=OneColumn}
  \fi

\else
  % For PDF Online version
  \hypersetup{
    final=true,
    plainpages=false,
    pdfstartview=FitV,
    pdftoolbar=true,
    pdfmenubar=true,
    bookmarksopen=true,
    bookmarksnumbered=true,
    breaklinks=true,
    linktocpage,
    colorlinks=true,
    linkcolor=blue,
    urlcolor=blue,
    citecolor=blue,
    anchorcolor=green
  }

  \ifsetCustomMargin
    % Margin to be define in preamble using geometry package
    \else
      % No Margin staggering on Odd and Even side
      \RequirePackage[paper=\PHD@papersize,hmarginratio=1:1,
        vmarginratio=1:1,scale=0.75]{geometry} % dvips
    \fi
    \hypersetup{pdfpagelayout=OneColumn}
\fi

% ************************ URL Package and Definition **************************
\RequirePackage{url}
% Redefining urlstyle to use smaller fontsize in References with URLs
\newcommand{\url@leostyle}{%
 \@ifundefined{selectfont}{\renewcommand{\UrlFont}{\sffamily}}
 {\renewcommand{\UrlFont}{\normalsize}}}
\urlstyle{leo}

% option to split urls over multiple lines for latex >> DVIPS >> PDF option
\ifpdf
  % PDFLaTeX does it automatically.
\else
  % dvips
  \ifxetex
  \else % If not XeLaTeX
    \RequirePackage{breakurl} % to split the url over multiple lines
  \fi
\fi
  
% ******************************************************************************
% **************************** Pre-defined Settings ****************************
% ******************************************************************************

% *************************** Setting PDF Meta-Data ****************************
\ifpdf
\AtBeginDocument{
  \hypersetup{
    pdftitle = {\@title},
    pdfauthor = {\@author},
    pdfsubject={\@subject},
    pdfkeywords={\@keywords}
  }
}
\fi

% ******************************** Line Spacing ********************************
% Set spacing as 1.5 line spacing for the PhD Thesis
% In practice, fortunately, nobody knows really what â��one-and-a-half spaced
% typeâ�� means exactly (in terms of millimetres baseline distance). The following
% LaTeX setting has routinely been considered perfectly acceptable:

\renewcommand\baselinestretch{1.2}

% ******************************** Justification *******************************
% Left aligned as per University identity guidelines
\ifPHD@textJustify
\message{PhDThesisPSnPDF: The University identity guidelines recommend using 
left aligned text. Please use `flushleft' in the documentclass option, if you
wish to left align your text}
\else
\AtBeginDocument{
\raggedright
}
\fi


% ************************** TOC and Hide Sections *****************************
\newcommand{\nocontentsline}[3]{}
\newcommand{\tochide}[2]{
	\bgroup\let
	\addcontentsline=\nocontentsline#1{#2}
	\egroup}
% Removes pagenumber appearing from TOC
\addtocontents{toc}{\protect\thispagestyle{plain}}


% ***************************** Header Formatting ******************************
% Custom Header with Chapter Number, Page Number and Section Numbering

\RequirePackage{fancyhdr} % Define custom header

% Style 1: Sets Page Number at the Top and Chapter/Section Name on LE/RO
\fancypagestyle{PageStyleI}{
  \renewcommand{\chaptermark}[1]{\markboth{##1}{}}
  \renewcommand{\sectionmark}[1]{\markright{\thesection\ ##1\ }}
  \fancyhf{}
  \fancyhead[RO]{\nouppercase \rightmark\hspace{0.25em} | 
    \hspace{0.25em} \bfseries{\thepage}}
  \fancyhead[LE]{ {\bfseries\thepage} \hspace{0.25em} | 
    \hspace{0.25em} \nouppercase \leftmark}
}

% Style 2: Sets Page Number at the Bottom with Chapter/Section Name on LO/RE
\fancypagestyle{PageStyleII}{
  \renewcommand{\chaptermark}[1]{\markboth{##1}{}}
  \renewcommand{\sectionmark}[1]{\markright{\thesection\ ##1}}
  \fancyhf{}
  \fancyhead[RO]{\bfseries\nouppercase \rightmark}
  \fancyhead[LE]{\bfseries \nouppercase \leftmark}
  \fancyfoot[C]{\thepage}
  \fancyheadoffset[RO]{0.01in}
}


% Set Fancy Header Command is defined to Load FancyHdr after Geometry is defined
\newcommand{\setFancyHdr}{

\pagestyle{fancy}

\ifPHD@pageStyleI
  % Style 1: Sets Page Number at the Top and Chapter/Section Name on LE/RO
  \pagestyle{PageStyleI}

\else
  \ifPHD@pageStyleII

  % Style 2: Sets Page Number at the Bottom with Chapter/Section Name on LO/RE
  \pagestyle{PageStyleII}

  \else
  % Default Style: Sets Page Number at the Top (LE/RO) with Chapter/Section Name
  % on LO/RE and an empty footer
    \renewcommand{\chaptermark}[1]{\markboth {##1}{}}
    \renewcommand{\sectionmark}[1]{\markright{\thesection\ ##1}}
    \fancyhf{}
    \fancyhead[LO]{\nouppercase \rightmark}
    \fancyhead[LE,RO]{\bfseries\thepage}
    \fancyhead[RE]{\nouppercase \leftmark}
  \fi
\fi
}

\setlength{\headheight}{14.5pt}
%\renewcommand{\headrulewidth}{0.5pt}
%\renewcommand{\footrulewidth}{0pt}
\fancypagestyle{plain}{
  \fancyhead{}
  \renewcommand{\headrulewidth}{0pt}
}

% If Margin has been set (default margin print/online version)
\ifsetCustomMargin
\AtBeginDocument{
\@ifpackageloaded{geometry}{}{\ClassWarning{PhDThesisPSnPDF}{%
  Custom margin is chosen, but geometry package is not loaded. Please load the
  `geometry' package in the preamble.}}}
\else
\setFancyHdr % Apply fancy header settings otherwise apply it in preamble
\fi

% **************** Clear Header Style on the Last Empty Odd pages **************
\renewcommand{\cleardoublepage}{\clearpage\if@twoside \ifodd\c@page\else%
	\hbox{}%
	\thispagestyle{plain}  % Empty header styles
	\newpage%
	\if@twocolumn\hbox{}\newpage\fi\fi\fi}


% ******************************************************************************
% **************************** Macro Definitions *******************************
% ******************************************************************************
% These macros are used to declare arguments needed for the
% construction of the title page and other preamble.

% Subtitle (optional)
\newcommand{\@subtitle}{}
\newcommand{\subtitle}[1]{\renewcommand{\@subtitle}{#1}}

% The year and term the degree will be officially conferred
\newcommand{\@degreedate}{\monthname[\the\month]\space\the\year}
\newcommand{\degreedate}[1]{\renewcommand{\@degreedate}{#1}}

% The full (unabbreviated) name of the degree
\newcommand{\@degreetitle}{}
\newcommand{\degreetitle}[1]{\renewcommand{\@degreetitle}{#1}}

% The name of your department(eg. Engineering, Maths, Physics)
\newcommand{\@dept}{}
\newcommand{\dept}[1]{\renewcommand{\@dept}{#1}}

% The name of your college (eg. King's)
\newcommand{\@college}{}
\newcommand{\college}[1]{\renewcommand{\@college}{#1}}

% The name of your University
\newcommand{\@university}{}
\newcommand{\university}[1]{\renewcommand{\@university}{#1}}

% Defining the crest
\newcommand{\@crest}{}
\newcommand{\crest}[1]{\renewcommand{\@crest}{#1}}

% Defining the college crest
\newif\ifPHD@collegeshield\PHD@collegeshieldfalse
\newcommand{\@collegeshield}{}
\newcommand{\collegeshield}[1]{\renewcommand{\@collegeshield}{#1}\PHD@collegeshieldtrue}

% Supervisor
\newif\ifPHD@supervisor\PHD@supervisorfalse
\newcommand{\@supervisor}{}
\newcommand{\supervisor}[1]{\renewcommand{\@supervisor}{#1}\PHD@supervisortrue}

% Supervisor Title (Supervisor - Default, can be changed)
\newcommand{\@supervisorrole}{Supervisors: }
\newcommand{\supervisorrole}[1]{\renewcommand{\@supervisorrole}{#1}}

% Supervisor width to align
\newcommand{\@supervisorlinewidth}{0.35\textwidth}
\newcommand{\supervisorlinewidth}[1]{\renewcommand{\@supervisorlinewidth}{#1}}

% Advisor
\newif\ifPHD@advisor\PHD@advisorfalse
\newcommand{\@advisor}{}
\newcommand{\advisor}[1]{\renewcommand{\@advisor}{#1}\PHD@advisortrue}

% Advisor Title (Advisor - Default, can be changed)
\newcommand{\@advisorrole}{Advisor: }
\newcommand{\advisorrole}[1]{\renewcommand{\@advisorrole}{#1}}

% Advisor width to align
\newcommand{\@advisorlinewidth}{0.25\textwidth}
\newcommand{\advisorlinewidth}[1]{\renewcommand{\@advisorlinewidth}{#1}}

% Submission Text
\newcommand{\submissiontext}{This dissertation is submitted for the degree of }

% keywords (These keywords will appear in the PDF meta-information
% called `pdfkeywords`.)
\newcommand{\@keywords}{}
\newcommand{\keywords}[1]{\renewcommand{\@keywords}{#1}}

% subjectline (This subject will appear in the PDF meta-information
% called `pdfsubject`.)
\newcommand{\@subject}{}
\newcommand{\subject}[1]{\renewcommand{\@subject}{#1}}

% Declaration title text
\newcommand{\@declarationtitle}{Declaration}

% Acknowledgment title text
\newcommand{\@acknowledgementstitle}{Acknowledgements}

% Abstract title text
\newcommand{\@abstracttitle}{Abstract}

% Names for the nomenclature groups
\newcommand{\@nomenclatureromans}{Roman Symbols}
\newcommand{\@nomenclaturegreeks}{Greek Symbols}
\newcommand{\@nomenclatureacronyms}{Acronyms / Abbreviations}
\newcommand{\@nomenclaturesuperscripts}{Superscripts}
\newcommand{\@nomenclaturesubscripts}{Subscripts}
\newcommand{\@nomenclatureothers}{Other Symbols}


% These macros define an environment for front matter that is always
% single column even in a double-column document.
\newenvironment{alwayssingle}{%
       \@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
       \else\newpage\fi}
       {\if@restonecol\twocolumn\else\newpage\fi}

% Set single column even under two column layout
\newcommand{\setsinglecolumn}{
\if@twocolumn
   \onecolumn
\else
\fi
}


% ******************************************************************************
% *************************** Front Matter Layout ******************************
% ******************************************************************************

% ******************************** Title Page **********************************
\renewcommand{\maketitle}{

% To compute the free vertical space in Title page
\computeTitlePageSpacing

\thispagestyle{plain}

\begin{singlespace}
\begin{center}

% University Crest Long if college crest is defined
\ifPHD@collegeshield%
	{\usebox{\PHD@crest}}
	\vspace{.15\PHD@titlepagespacing}
\fi

% Title
{\usebox{\PHD@Title}} % subtitle is defined


% Crest

\ifPHD@collegeshield%
	\vspace{.15\PHD@titlepagespacing}
	{\usebox{\PHD@collegecrest}}
	\vspace{.1\PHD@titlepagespacing}
\else
	\vspace{.25\PHD@titlepagespacing}
	{\usebox{\PHD@crest}}
	\vspace{.15\PHD@titlepagespacing}
\fi



% Author
{\usebox{\PHD@author}}
\vspace*{1em}

% Supervisor
\ifPHD@supervisor%
{\usebox{\PHD@supervisor}}
\vspace*{0.5em}
\fi

% Advisor
\ifPHD@advisor%
{\usebox{\PHD@advisor}}
\vspace*{0.5em}
\fi

% Department and University
{\usebox{\PHD@dept}}
\vspace{.2\PHD@titlepagespacing}

% Submission Text
{\usebox{\PHD@submission}}

% College and degree date
\vfill
{\usebox{\PHD@collegedate}}
    
\end{center}

\end{singlespace}
}

% ********************************* Dedication *********************************
% The dedication environment makes sure the dedication gets its
% own page, centered

\newenvironment{dedication}
{
\cleardoublepage
\setsinglecolumn
\vspace*{0.2\textheight}
\thispagestyle{plain}
\centering
}



% ******************************* Declaration **********************************
% The declaration environment puts a large, bold, centered
% "Declaration" label at the top of the page.

\newenvironment{declaration}{
\cleardoublepage
\setsinglecolumn
\chapter*{\centering \Large \@declarationtitle}
\thispagestyle{plain}
}{
\flushright
\@author{}\\
\@degreedate{}
\vfill
}



% ****************************** Acknowledgements ********************************
% The acknowledgements environment puts a large, bold, centered
% "Acknowledgements" label at the top of the page.

\newenvironment{acknowledgements}{
\cleardoublepage
\setsinglecolumn
\chapter*{\centering \Large \@acknowledgementstitle}
\thispagestyle{plain}
}



% ******************************* Nomenclature *********************************
\RequirePackage[intoc]{nomencl}
\makenomenclature
\renewcommand{\nomgroup}[1]{%
\ifthenelse{\equal{#1}{A}}{\item[\textbf{\@nomenclatureromans}]}{% 
\ifthenelse{\equal{#1}{G}}{\item[\textbf{\@nomenclaturegreeks}]}{%
\ifthenelse{\equal{#1}{Z}}{\item[\textbf{\@nomenclatureacronyms}]}{%
\ifthenelse{\equal{#1}{R}}{\item[\textbf{\@nomenclaturesuperscripts}]}{%
\ifthenelse{\equal{#1}{S}}{\item[\textbf{\@nomenclaturesubscripts}]}{%
\ifthenelse{\equal{#1}{X}}{\item[\textbf{\@nomenclatureothers}]}
{}
}% matches mathematical symbols > X
}% matches Subscripts           > S
}% matches Superscripts         > R
}% matches Abbreviations        > Z
}% matches Greek Symbols        > G
}% matches Roman Symbols        > A

% To add nomenclature in the header
\renewcommand{\nompreamble}{\markboth{\nomname}{\nomname}}

% Add nomenclature to contents and print out nomenclature
\newcommand{\printnomencl}[1][]{
\ifthenelse{\equal {#1}{}}
{\printnomenclature}
{\printnomenclature[#1]}
%\addcontentsline{toc}{chapter}{\nomname}
}


% ***************************** Create the index *******************************
\ifPHD@index
    \RequirePackage{makeidx}
    \makeindex
    \newcommand{\printthesisindex}{
        \cleardoublepage
        \phantomsection
        \printindex}
\else
    \newcommand{\printthesisindex}{}
\fi

% ***************************** Chapter Mode ***********************************
% The chapter mode allows user to only print particular chapters with references
% All other options are disabled by default
% To include only specific chapters without TOC, LOF, Title and Front Matter
% To send it to supervisior for changes

\ifPHD@chapter
    \defineChaptertrue
    % Disable the table of contents, figures, tables, index and nomenclature
    \renewcommand{\maketitle}{}
    \renewcommand{\tableofcontents}{}
    \renewcommand{\listoffigures}{}
    \renewcommand{\listoftables}{}
    \renewcommand{\printnomencl}{}
    \renewcommand{\printthesisindex}{}
\else
    \defineChapterfalse
\fi

% ******************************** Abstract ************************************
% The abstract environment puts a large, bold, centered "Abstract" label at
% the top of the page. Defines both abstract and separate abstract environment

% To include only the Title and the abstract pages for submission to BoGS
\ifPHD@abstract
    \defineAbstracttrue
    % Disable the table of contents, figures, tables, index and nomenclature
    \renewcommand{\tableofcontents}{}
    \renewcommand{\listoffigures}{}
    \renewcommand{\listoftables}{}
    \renewcommand{\printnomencl}{}
    \renewcommand{\printnomencl}[1][2]{}
    \renewcommand{\printthesisindex}{}
    \renewcommand{\bibname}{}
    \renewcommand{\bibliography}[1]{\thispagestyle{plain}}
\else
    \defineAbstractfalse
\fi


\newenvironment{abstract} {
\ifPHD@abstract
% Separate abstract as per Student Registry guidelines
  \thispagestyle{plain}
  \setsinglecolumn
  \begin{center}
    { \Large {\bfseries {\@title}} \par}
    {{\large \vspace*{1em} \@author} \par}
  \end{center}
\else
% Normal abstract in the thesis
  \cleardoublepage
  \setsinglecolumn
  \chapter*{\centering \Large \@abstracttitle}
  \thispagestyle{plain}
\fi
}


% ******************** To compute empty space in title page *******************
% Boxes below are used to space different contents on the title page
% Based on https://github.com/cambridge/thesis

\newcommand{\computeTitlePageSpacing}{


% Title Box
\newsavebox{\PHD@Title}
\begin{lrbox}{\PHD@Title}
  \begin{minipage}[c]{0.98\textwidth}
    \centering \Huge \bfseries{\@title}
    \ifthenelse{\equal{\@subtitle}{}}{
      % subtitle is not defined
    }{
      \\
      \centering \Large {\@subtitle}
    } % subtitle is defined
  \end{minipage}
\end{lrbox}

% University Crest Box
\newsavebox{\PHD@crest}
\begin{lrbox}{\PHD@crest}
  {\@crest \par}
\end{lrbox}

\newsavebox{\PHD@collegecrest}
\begin{lrbox}{\PHD@collegecrest}
  \ifPHD@collegeshield%
    {\@collegeshield}
  \else
    % College shield is undefined
  \fi
\end{lrbox}

% Author Box
\newsavebox{\PHD@author}
\begin{lrbox}{\PHD@author}
  \begin{minipage}[c]{\textwidth}
    \centering \Large \bfseries{\@author}
      \vspace{0.5em}   
  \end{minipage}
\end{lrbox}

% Supervisor Box
\newsavebox{\PHD@supervisor}
\begin{lrbox}{\PHD@supervisor}
  \begin{minipage}[c]{\textwidth}
    \ifthenelse{\equal{\@supervisor}{}}{
      % supervisor is not defined
    }{
      \begin{center}
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  abstract = {Conventional light microscopy is limited in its resolving power by the Rayleigh limit to length scales on the order of 200 nm. On the other hand, spectroscopic techniques such as fluorescence resonance energy transfer cannot be used to measure distances {$>$}10 nm, leaving a “gap” in the ability of optical techniques to measure distances on the 10- to 100-nm scale. We have previously demonstrated the ability to localize single dye molecules to a precision of 1.5 nm with subsecond time resolution. Here we locate the position of two dyes and determine their separation with 5-nm precision, using the quantal photobleaching behavior of single fluorescent dye molecules. By fitting images both before and after photobleaching of one of the dyes, we may localize both dyes simultaneously and compute their separation. Hence, we have circumvented the Rayleigh limit and achieved nanometer-scale resolution. Specifically, we demonstrate the technique by measuring the distance between single fluorophores separated by 10–20 nm via attachment to the ends of double-stranded DNA molecules immobilized on a surface. In addition to bridging the gap in optical resolution, this technique may be useful for biophysical or genomic applications, including the generation of super-high-density maps of single-nucleotide polymorphisms.},
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  issue = {1},
  langid = {english},
  keywords = {3d,read},
  annotation = {Bandiera\_abtest: a Cc\_license\_type: cc\_by Cg\_type: Nature Research Journals Primary\_atype: Research Subject\_term: Structure determination;Super-resolution microscopy Subject\_term\_id: structure-determination;super-resolution-microscopy},
  file = {/home/oni/Zotero/storage/PGZR6IV8/Heydarian et al. - 2021 - 3D particle averaging and detection of macromolecu.pdf;/home/oni/Zotero/storage/N6Q25T77/s41467-021-22006-5.html}
}

@misc{heydarianThreeDimensionalParticle,
  title = {Three Dimensional Particle Averaging for Structural Imaging of Macromolecular Complexes by Localization Microscopy},
  author = {Heydarian, Hamidreza and Przybylski, Adrian and Schueder, Florian and Jungmann, Ralf and {van}, Ben and Keller-Findeisen, Jan and Ries, Jonas and Stallinga, Sjoerd and Bates, Mark and Rieger, Bernd},
  number = {837575},
  publisher = {{bioRxiv}},
  url = {https://doi.org/10.1101/837575},
  abstract = {We present an approach for 3D particle fusion in localization microscopy which dramatically increases signal-to-noise ratio and resolution in single particle analysis. Our method does not require a structural template, and properly handles anisotropic localization uncertainties. We demonstrate 3D particle reconstructions of the Nup107 subcomplex of the nuclear pore complex (NPC), cross-validated using multiple localization microscopy techniques, as well as two-color 3D reconstructions of the NPC, and reconstructions of DNA-origami tetrahedrons.},
  langid = {english},
  file = {/home/oni/Zotero/storage/8YQHZGJW/Heydarian et al. - Three dimensional particle averaging for structura.pdf}
}

@article{hochreiterLongShortTermMemory1997,
  title = {Long {{Short-Term Memory}}},
  author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
  date = {1997-11-15},
  journaltitle = {Neural Computation},
  shortjournal = {Neural Computation},
  volume = {9},
  number = {8},
  pages = {1735--1780},
  issn = {0899-7667},
  doi = {10.1162/neco.1997.9.8.1735},
  url = {https://doi.org/10.1162/neco.1997.9.8.1735},
  urldate = {2022-07-06},
  abstract = {Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.},
  file = {/home/oni/Zotero/storage/B59ZQRZ4/Long-Short-Term-Memory.html}
}

@article{holdenHighThroughput3D2014,
  title = {High Throughput {{3D}} Super-Resolution Microscopy Reveals {{Caulobacter}} Crescentus in Vivo {{Z-ring}} Organization},
  author = {Holden, Seamus J. and Pengo, Thomas and Meibom, Karin L. and Fernandez, Carmen Fernandez and Collier, Justine and Manley, Suliana},
  date = {2014-03-25},
  journaltitle = {Proceedings of the National Academy of Sciences},
  shortjournal = {PNAS},
  volume = {111},
  number = {12},
  eprint = {24616530},
  eprinttype = {pmid},
  pages = {4566--4571},
  publisher = {{National Academy of Sciences}},
  issn = {0027-8424, 1091-6490},
  doi = {10.1073/pnas.1313368111},
  url = {https://www.pnas.org/content/111/12/4566},
  urldate = {2021-08-27},
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  langid = {english},
  keywords = {3-D PSF models,Single molecule localization microscopy},
  annotation = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2818.2012.03675.x},
  file = {/home/oni/Zotero/storage/5MPWQSQW/j.1365-2818.2012.03675.html}
}

@article{kirshner3DPSFFitting2013a,
  title = {3-{{D PSF}} Fitting for Fluorescence Microscopy: Implementation and Localization Application: 3-{{D PSF FITTING FOR FLUORESCENCE MICROSCOPY}}},
  shorttitle = {3-{{D PSF}} Fitting for Fluorescence Microscopy},
  author = {Kirshner, H. and Aguet, F. and Sage, D. and Unser, M.},
  date = {2013-01},
  journaltitle = {Journal of Microscopy},
  volume = {249},
  number = {1},
  pages = {13--25},
  issn = {00222720},
  doi = {10.1111/j.1365-2818.2012.03675.x},
  url = {https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2012.03675.x},
  urldate = {2022-07-04},
  abstract = {Localization microscopy relies on computationally efficient Gaussian approximations of the point spread function for the calculation of fluorophore positions. Theoretical predictions show that under specific experimental conditions, localization accuracy is significantly improved when the localization is performed using a more realistic model. Here, we show how this can be achieved by considering three-dimensional (3-D) point spread function models for the wide field microscope. We introduce a least-squares point spread function fitting framework that utilizes the Gibson and Lanni model and propose a computationally efficient way for evaluating its derivative functions. We demonstrate the usefulness of the proposed approach with algorithms for particle localization and defocus estimation, both implemented as plugins for ImageJ.},
  langid = {english},
  file = {/home/oni/Zotero/storage/X3JPAWD5/Kirshner et al. - 2013 - 3-D PSF fitting for fluorescence microscopy imple.pdf}
}

@inproceedings{kohlbrennerBestPracticeExplaining2020,
  title = {Towards {{Best Practice}} in {{Explaining Neural Network Decisions}} with {{LRP}}},
  author = {Kohlbrenner, Maximilian and Bauer, Alexander and Nakajima, Shinichi and Binder, Alexander and Samek, Wojciech and Lapuschkin, Sebastian},
  date = {2020-07-19},
  pages = {5},
  publisher = {{IEEE}},
  doi = {10.1109/IJCNN48605.2020},
  url = {https://ieeexplore.ieee.org/document/9206975},
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  abstract = {The field of image denoising is currently dominated by discriminative deep learning methods that are trained on pairs of noisy input and clean target images. Recently it has been shown that such methods can also be trained without clean targets. Instead, independent pairs of noisy images can be used, in an approach known as NOISE2NOISE (N2N). Here, we introduce NOISE2VOID (N2V), a training scheme that takes this idea one step further. It does not require noisy image pairs, nor clean target images. Consequently, N2V allows us to train directly on the body of data to be denoised and can therefore be applied when other methods cannot. Especially interesting is the application to biomedical image data, where the acquisition of training targets, clean or noisy, is frequently not possible. We compare the performance of N2V to approaches that have either clean target images and/or noisy image pairs available. Intuitively, N2V cannot be expected to outperform methods that have more information available during training. Still, we observe that the denoising performance of NOISE2VOID drops in moderation and compares favorably to training-free denoising methods.},
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  abstract = {In this work, we propose an end-to-end framework to learn local multi-view descriptors for 3D point clouds. To adopt a similar multi-view representation, existing studies use hand-crafted viewpoints for rendering in a preprocessing stage, which is detached from the subsequent descriptor learning stage. In our framework, we integrate the multiview rendering into neural networks by using a differentiable renderer, which allows the viewpoints to be optimizable parameters for capturing more informative local context of interest points. To obtain discriminative descriptors, we also design a soft-view pooling module to attentively fuse convolutional features across views. Extensive experiments on existing 3D registration benchmarks show that our method outperforms existing local descriptors both quantitatively and qualitatively.},
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  abstract = {Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.},
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  abstract = {Advanced microscopy enables us to acquire quantities of time-lapse images to visualize the dynamic charac teristics of tissues, cells or molecules. Microscopy images typically vary in signal-to-noise ratios and include a wealth of information which require multiple parameters and time-consuming iterative algorithms for pro cessing. Precise analysis and statistical quantification are often needed for the understanding of the biological mechanisms underlying these dynamic image sequences, which has become a big challenge in the field. As deep learning technologies develop quickly, they have been applied in bioimage processing more and more frequently. Novel deep learning models based on convolution neural networks have been developed and illustrated to achieve inspiring outcomes. This review article introduces the applications of deep learning algorithms in mi croscopy image analysis, which include image classification, region segmentation, object tracking and superresolution reconstruction. We also discuss the drawbacks of existing deep learning-based methods, especially on the challenges of training datasets acquisition and evaluation, and propose the potential solutions. Further more, the latest development of augmented intelligent microscopy that based on deep learning technology may lead to revolution in biomedical research.},
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  abstract = {Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate differentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new auto-differentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.},
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  abstract = {In optical serial sectioning, the 3-D structure of a microscopic specimen is observed by incrementing the focusing plane of a light microscope through the specimen. If the depth of field of the microscope is infinitesimal, the image obtained from each focusing plane is an in-focus slice of the optical density of the specimen. The authors show that the finite aperture of any practical microscope inevitably results in the loss of a biconic region of frequencies in the 3-D Fourier spectrum of the optical density, oriented in the direction of the optical axis. Thus, the resolution along this axis is severely reduced. Outside the missing cone of frequencies, the spectrum is distorted by a strong low-pass effect. A closed form expression is obtained for the overall distortion function using principles of geometric optics, and by assuming that the absorption of the specimen is linear and nondiffractive. Methods for restoring the 3-D images obtained through optical serial sectioning are considered, and several examples are provided.{$<>$}},
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  abstract = {Super-resolution microscopies have become an established tool in biological research. However, imaging throughput remains a main bottleneck in acquiring large datasets required for quantitative biology. Here we describe multifocal flat illumination for field-independent imaging (mfFIFI). By integrating mfFIFI into an instant structured illumination microscope (iSIM), we extend the field of view (FOV) to {$>$}100\,×\,100\,µm2 while maintaining high-speed, multicolor, volumetric imaging at double the diffraction-limited resolution. We further extend the effective FOV by stitching adjacent images for fast live-cell super-resolution imaging of dozens of cells. Finally, we combine our flat-fielded iSIM with ultrastructure expansion microscopy to collect three-dimensional (3D) images of hundreds of centrioles in human cells, or thousands of purified Chlamydomonas reinhardtii centrioles, per hour at an effective resolution of \textasciitilde 35\,nm. Classification and particle averaging of these large datasets enables 3D mapping of posttranslational modifications of centriolar microtubules, revealing differences in their coverage and positioning.},
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  abstract = {Reconstructing a high-resolution 3D model of an object is a challenging task in computer vision. Designing scalable and light-weight architectures is crucial while addressing this problem. Existing point-cloud based reconstruction approaches directly predict the entire point cloud in a single stage. Although this technique can handle low-resolution point clouds, it is not a viable solution for generating dense, high-resolution outputs. In this work, we introduce DensePCR, a deep pyramidal network for point cloud reconstruction that hierarchically predicts point clouds of increasing resolution. Towards this end, we propose an architecture that first predicts a low-resolution point cloud, and then hierarchically increases the resolution by aggregating local and global point features to deform a grid. Our method generates point clouds that are accurate, uniform and dense. Through extensive quantitative and qualitative evaluation on synthetic and real datasets, we demonstrate that DensePCR outperforms the existing state-of-the-art point cloud reconstruction works, while also providing a light-weight and scalable architecture for predicting high-resolution outputs.},
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  abstract = {We propose an efficient method for approximating natural gradient descent in neural networks which we call Kronecker-Factored Approximate Curvature (K-FAC). K-FAC is based on an efficiently invertible approximation of a neural network's Fisher information matrix which is neither diagonal nor low-rank, and in some cases is completely non-sparse. It is derived by approximating various large blocks of the Fisher (corresponding to entire layers) as being the Kronecker product of two much smaller matrices. While only several times more expensive to compute than the plain stochastic gradient, the updates produced by K-FAC make much more progress optimizing the objective, which results in an algorithm that can be much faster than stochastic gradient descent with momentum in practice. And unlike some previously proposed approximate natural-gradient/Newton methods which use high-quality non-diagonal curvature matrices (such as Hessian-free optimization), K-FAC works very well in highly stochastic optimization regimes. This is because the cost of storing and inverting K-FAC's approximation to the curvature matrix does not depend on the amount of data used to estimate it, which is a feature typically associated only with diagonal or low-rank approximations to the curvature matrix.},
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  abstract = {The purpose of this paper is to correct a misconception about convolutional neural networks (CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight sharing. However, contrary to popular belief, convolutional layers are not translation equivariant, even when boundary effects are ignored and when pooling and subsampling are absent. This is because shift equivariance is a discrete symmetry while translation equivariance is a continuous symmetry. That discrete systems do not in general inherit continuous equivariances is a fundamental limitation of equivariant deep learning. We discuss two implications of this fact. First, CNNs have achieved success in image processing despite not inheriting the translation equivariance of the physical systems they model. Second, using CNNs to solve partial differential equations (PDEs) will not result in translation equivariant solvers.},
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  abstract = {We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.},
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  abstract = {Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods.},
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  abstract = {Cryo-electron microscopy (cryo-EM) is increasingly becoming a mainstream technology for studying the architecture of cells, viruses and protein assemblies at molecular resolution. Recent developments in microscope design and imaging hardware, paired with enhanced image processing and automation capabilities, are poised to further advance the effectiveness of cryo-EM methods. These developments promise to increase the speed and extent of automation, and to improve the resolutions that may be achieved, making this technology useful to determine a wide variety of biological structures. Additionally, established modalities for structure determination, such as X-ray crystallography and nuclear magnetic resonance spectroscopy, are being routinely integrated with cryo-EM density maps to achieve atomic-resolution models of complex, dynamic molecular assemblies. In this review, which is directed towards readers who are not experts in cryo-EM methodology, we provide an overview of emerging themes in the application of this technology to investigate diverse questions in biology and medicine. We discuss the ways in which these methods are being used to study structures of macromolecular assemblies that range in size from whole cells to small proteins. Finally, we include a description of how the structural information obtained by cryo-EM is deposited and archived in a publicly accessible database.},
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  abstract = {Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning problems such as image recognition. Although these methods perform impressively well, they have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network architectures. Our method called deep Taylor decomposition efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.},
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  abstract = {The Gaussian function is simple and easy to implement as Point Spread Function (PSF) model for fitting the position of fluorescent emitters in localization microscopy. Despite its attractiveness the appropriateness of the Gaussian is questionable as it is not based on the laws of optics. Here we study the effect of emission dipole orientation in conjunction with optical aberrations on the localization accuracy of position estimators based on a Gaussian model PSF. Simulated image spots, calculated with all effects of high numerical aperture, interfaces between media, polarization, dipole orientation and aberrations taken into account, were fitted with a Gaussian PSF based Maximum Likelihood Estimator. For freely rotating dipole emitters it is found that the Gaussian works fine. The same, theoretically optimum, localization accuracy is found as if the true PSF were a Gaussian, even for aberrations within the usual tolerance limit of high-end optical imaging systems such as microscopes (Marechal’s diffraction limit). For emitters with a fixed dipole orientation this is not the case. Localization errors are found that reach up to 40 nm for typical system parameters and aberration levels at the diffraction limit. These are systematic errors that are independent of the total photon count in the image. The Gaussian function is therefore inappropriate, and more sophisticated PSF models are a practical necessity.},
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  abstract = {Poring Over the Nuclear Pore                            The nuclear pore is a macromolecular complex that traverses the paired membranes of the nuclear envelope through which a variety of nuclear protein and RNA cargoes must traffic.                                Szymborska                 et al.                              (p.               655               , published online 11 July) combined super-resolution microscopy with single-particle averaging to localize the proteins that make up the structural scaffold of the nuclear pore complex with a precision well below one nanometer. These molecular positional constraints clarified contradictory models for the structure of the nuclear pore and demonstrate that the structural organization of protein complexes can be studied by light microscopy in situ in whole cells.                        ,              The localization of individual components of the nuclear pore complex was dissected using information from thousands of pores.           ,              Much of life’s essential molecular machinery consists of large protein assemblies that currently pose challenges for structure determination. A prominent example is the nuclear pore complex (NPC), for which the organization of its individual components remains unknown. By combining stochastic super-resolution microscopy, to directly resolve the ringlike structure of the NPC, with single particle averaging, to use information from thousands of pores, we determined the average positions of fluorescent molecular labels in the NPC with a precision well below 1 nanometer. Applying this approach systematically to the largest building block of the NPC, the Nup107-160 subcomplex, we assessed the structure of the NPC scaffold. Thus, light microscopy can be used to study the molecular organization of large protein complexes in situ in whole cells.},
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\chapter{Experiment details.}
\section{Experiment parameters}
\label{appendix:experiments}

What follows is a chronological list of all the experiments and their parameters, referred to in this thesis. Included is the branch and revision of the code-base, along with the command line parameters.

\textbf{2021-01-18-exp-st-2}
\small
\begin{lstlisting}
git reset --hard  696185ebab73ac14c3959e40bec91d325dc30059
python3 ../train.py --savedir ../../runs/2021_01_18_exp_st_2
--save-interval 800 --train-size 80000 --poisson --test-size 256
--valid-size 64 --objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32 --log-interval 100 
--num-points 350 --lr 0.0001 --stretch
--stretch-mag 1.6 --sigma-file sigma_bunny.csv
\end{lstlisting}

\textbf{2021-01-18-exp-st-3}
\begin{lstlisting}
git reset --hard  696185ebab73ac14c3959e40bec91d325dc30059
python3 ../train.py --savedir ../../runs/2021_01_18_exp_st_3
--save-interval 800 --train-size 80000 --poisson --test-size 256
--valid-size 64 --objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32 --log-interval 100
--num-points 350 --lr 0.0001 --stretch 
-stretch-mag 1.8 --sigma-file sigma_bunny.csv
\end{lstlisting}

\textbf{2021-01-18-exp-st-4}
\begin{lstlisting}
git reset --hard  696185ebab73ac14c3959e40bec91d325dc30059
python3 ../train.py --savedir ../../runs/2021_01_18_exp_st_4
--save-interval 800 --train-size 80000 --poisson --test-size 256
--valid-size 64 --objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32 --log-interval 100
--num-points 350 --lr 0.0001 --stretch--stretch-mag 2.0
--sigma-file sigma_bunny.csv
\end{lstlisting}

\textbf{2021-01-18-exp-st-4}
\begin{lstlisting}
git reset --hard  696185ebab73ac14c3959e40bec91d325dc30059
python3 ../train.py --savedir ../../runs/2021_01_18_exp_st_4
--save-interval 800 --train-size 80000 --poisson --test-size 256
--valid-size 64 --objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32 --log-interval 100
--num-points 350 --lr 0.0001 --stretch--stretch-mag 2.0
--sigma-file sigma_bunny.csv
\end{lstlisting}

\textbf{2021-08-15-dora-4}
\begin{lstlisting}
#git reset --hard  e9b7a0e02a3b76714f82caded5c42be8c3f267a4
python3 ../train.py --savedir ../../runs/2021_08_15_dora_4
--save-interval 300 --train-size 14000 --test-size 600
--valid-size 2 --save-stats --fitspath /phd/cep/dora/dataset
--buffer-size 32 --predict-sigma --normalise-basic
--mask-thresh 0.0001 --epochs 40 --batch-size 32
--log-interval 100 --num-points 200 --lr 0.0004
--image-size 60 --sigma-file sigma_dora.csv
\end{lstlisting}

\textbf{2021-11-15}
\begin{lstlisting}
python ../train.py --savedir ../../runs/2021_11_15 --save-interval 800
--train-size 40000 --test-size 200 --valid-size 64
--objpath ../objs/bunny_large.obj --save-stats --predict-sigma 
--buffer-size 32 --epochs 40 --batch-size 32 --cont --normalise-basic 
--log-interval 100 --num-points 500 --lr 0.0004 
--sigma-file sigma_bunny.csv
\end{lstlisting}

\textbf{2021-11-17-3}
\begin{lstlisting}
#git reset --hard  4820addaa9fcca91bc4b244abb68fa7b242d71ac
python ../train.py --savedir ../../runs/2021_11_17_3
--save-interval 800
--train-size 40000 --test-size 200 --valid-size 64
--objpath ../objs/bunny_large.obj --save-stats --predict-sigma
--buffer-size 32 --epochs 15 --batch-size 32 --cont
--normalise-basic --log-interval 100 --num-points 500
--lr 0.0004 --sigma-file sigma_bunny_short.csv
\end{lstlisting}

\textbf{2021-11-18-2}
\begin{lstlisting}
#git reset --hard  4820addaa9fcca91bc4b244abb68fa7b242d71ac
python ../train.py --savedir ../../runs/2021_11_18_2
--save-interval 800 --train-size 40000 --test-size 200 
--valid-size 64 --objpath ../objs/bunny_large.obj
--save-stats --predict-sigma
--poseonly --buffer-size 32 --epochs 20 --batch-size 32 --cont
--normalise-basic --log-interval 100 --num-points 350 
--lr 0.0004 --sigma-file sigma_bunny_short.csv
\end{lstlisting}

\textbf{2021-11-25-3}
\begin{lstlisting}
# branch  master
#git reset --hard  a6a18379d8fcb982bfb7df55af51b812de00e901
python ../train.py --savedir ../../runs/2021_11_23_2
--save-interval 800 --train-size 40000 --test-size 500
--valid-size 64 --objpath ../objs/bunny_large.obj
--save-stats --predict-sigma --poseonly --no-translate
--no-data-translate --buffer-size 32 --epochs 20
--batch-size 32 --cont --normalise-basic --log-interval 100
--num-points 350 --lr 0.0004 --sigma-file sigma_crazy.csv
\end{lstlisting}

\textbf{2021-11-25-3}
\begin{lstlisting}
#git reset --hard  d3892131cc2eb6dd22310ce10184e4104b7cf16d
python ../train.py --savedir ../../runs/2021_11_29_3
--save-interval 800
--train-size 40000 --test-size 500 --valid-size 64
--objpath ../objs/bunny_large.obj --save-stats --predict-sigma
--buffer-size 32 --epochs 40 --batch-size 32 --cont --normalise-basic
--log-interval 100 --num-points 350 --lr 0.004 --plr 0.0004
--sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2021-11-29-3}
\begin{lstlisting}
#git reset --hard  d3892131cc2eb6dd22310ce10184e4104b7cf16d
python ../train.py --savedir ../../runs/2021_11_29_3 --save-interval 800
--train-size 40000 --test-size 500 --valid-size 64
--objpath ../objs/bunny_large.obj --save-stats --predict-sigma
--buffer-size 32 --epochs 40 --batch-size 32 --cont --normalise-basic
--log-interval 100 --num-points 350 --lr 0.004 --plr 0.0004
--sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2021-12-11}
\begin{lstlisting}
#git reset --hard  97921d63cdeec42b8a71365b12a324ce989cd795
python ../train.py --savedir ../../runs/2021_12_11 --save-interval 800
--train-size 4000 --test-size 20 --valid-size 12 --num-aug 10
--aug --objpath ../objs/bunny_large.obj --save-stats --predict-sigma
--buffer-size 32 --epochs 40 --batch-size 32 --cont --normalise-basic
--log-interval 100 --num-points 500 --lr 0.0004 --sigma-file
sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2021-12-15}
\begin{lstlisting}
#git reset --hard  56a3c18f6f3b563321ba28c6ef0e24e31c092e6a
python ../train.py --savedir ../../runs/2021_12_15
--save-interval 800 --train-size 40000 --test-size 200
--valid-size 120 --ipspot --objpath ../objs/bunny_large.obj
--save-stats --predict-sigma --buffer-size 32 --epochs 40
--batch-size 32 --cont --normalise-basic --log-interval 100
--num-points 350 --lr 0.0004 
--sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2021-12-18-2}
\begin{lstlisting}
python ../train.py --savedir ../../runs/2021_12_18_2 --save-interval 800
--train-size 40000 --test-size 200 --valid-size 120 --adapt
--reduction 0.5 --objpath ../objs/bunny_large.obj --save-stats
--predict-sigma --buffer-size 32 --epochs 40 --batch-size 32 --cont
--normalise-basic --log-interval 100 --num-points 500 --plr 0.0004
--lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-01-26-exp-ss-6}
\begin{lstlisting}
git reset --hard  729d20184a2cc2381ce780f1cd77fa5c9565a274
python ../train.py --savedir ../../runs/2022_01_26_exp_ss_6
--save-interval 800 --train-size 8000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj --save-stats
--predict-sigma --buffer-size 32 --epochs 200 --batch-size 32
--cont --normalise-basic --log-interval 100 --num-points 350
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-01-26-exp-ss-7}
\begin{lstlisting}
git reset --hard  729d20184a2cc2381ce780f1cd77fa5c9565a274
python ../train.py --savedir ../../runs/2022_01_26_exp_ss_7
--save-interval 800 --train-size 16000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj --save-stats
--predict-sigma --buffer-size 32 --epochs 100 --batch-size 32
--cont --normalise-basic --log-interval 100 --num-points 350
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-01-26-exp-ss-8}
\begin{lstlisting}
git reset --hard  729d20184a2cc2381ce780f1cd77fa5c9565a274
python ../train.py --savedir ../../runs/2022_01_26_exp_ss_8
--save-interval 800 --train-size 32000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj--save-stats
--predict-sigma --buffer-size 32 --epochs 50 --batch-size 32
--cont --normalise-basic --log-interval 100 --num-points 350
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-01-26-exp-ss-9}
\begin{lstlisting}
git reset --hard  729d20184a2cc2381ce780f1cd77fa5c9565a274
python ../train.py --savedir ../../runs/2022_01_26_exp_ss_9
--save-interval 800 --train-size 64000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj --save-stats
--predict-sigma --buffer-size 32 --epochs 25 --batch-size 32
--cont --normalise-basic --log-interval 100 --num-points 350
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-02-09-aug}
\begin{lstlisting}
git reset --hard  99f5a98955289c5d08a51747368b216513b71706
python ../train.py --savedir ../../runs/2022_02_09_aug
--save-interval 800 --train-size 10000 --aug --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj
--save-stats --buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --log-interval 200 --num-points 500
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
--image-width 128 --image-height 128
\end{lstlisting}

\textbf{2022-02-14}
\begin{lstlisting}
python train.py --batch-size 4 --epochs 40 --lr 0.0004
--save-stats --normalise-basic --log-interval 500
--save-interval 1000 --savedir ../runs/nope_2022_02_14
--sigma-file sigma_bunny_quick.csv
--objpath ./objs/bunny_large.obj --train-size 40000
--test-size 200 --valid-size 50 --image-width 128
--image-height 128 --image-depth 32
--buffer-size 4 --num-points 120
\end{lstlisting}

\textbf{2022-02-15}
\begin{lstlisting}
python train.py --batch-size 4 --epochs 100 --lr 0.0004
--save-stats --normalise-basic --log-interval 500
--save-interval 1000 --savedir ../runs/nope_2022_02_15
--sigma-file sigma.csv --fitspath /phd/wormz/queelim/dataset_roi
--startobjs ./objs/ASIL_simple.obj ./objs/ASIR_simple.obj 
./objs/ASJL_simple.obj ./objs/ASJR_simple.obj --train-size 2800
--test-size 100 --valid-size 50 --image-width 128 --image-height 128
--image-depth 32 --buffer-size 4 
\end{lstlisting}

\textbf{2022-02-21-4}
\begin{lstlisting}
#git reset --hard  1ea6d8ebf6dbf35a762c9bbc75c87e14315678cf
python train.py --batch-size 2 --epochs 40 --lr 0.0004
--save-stats --normalise-basic --log-interval 500
--save-interval 1000 --savedir ../runs/nope_2022_02_21_4
--sigma-file sigma_normal.csv
--objpath ./objs/worm_spheres.obj
--startobjs ./objs/ASIL_simple.obj ./objs/ASIR_simple.obj
./objs/ASJL_simple.obj ./objs/ASJR_simple.obj
--train-size 40000 --test-size 100 --valid-size 50
--image-width 128 --image-height 128 
--image-depth 32 --buffer-size 4 
\end{lstlisting}

\textbf{2022-03-01}
\begin{lstlisting}
#git reset --hard  e48a560620e6ae6a54c738be2544fe1d0d31f95a
python ../train.py --savedir ../../runs/2022_03_01
--save-interval 800 --train-size 40000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj
--save-stats --buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --log-interval 200 --num-points 500 
--plr 0.0004 --lr 0.000 --sigma-file sigma_bunny_quick.csv
--image-width 128 --image-height 128 --poseonly
\end{lstlisting}

\textbf{2022-03-03}
\begin{lstlisting}
#git reset --hard  a32dfb878d42a98fab4b41f2dfd4d06d61179686
python ../train.py --savedir ../../runs/2022_03_03
--save-interval 800 --train-size 40000 --test-size 200
--valid-size 120 --objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 40--batch-size 32 --normalise-basic
--log-interval 200 --num-points 500 --plr 0.0004 --lr 0.0004
--sigma-file sigma_bunny_quick.csv --image-width 128
--image-height 128 --poseonly --nosigmapredict
\end{lstlisting}

\textbf{2022-03-03}
\begin{lstlisting}
# branch  silhouette
#git reset --hard  a85fc2350e6f47b6e17ab787d8a20d00e8064d00
python ../train.py --savedir ../../runs/2022_04_20
--save-interval 800 --train-size 40000 --test-size 400
--valid-size 50 --poseonly --nosigmapredict
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 16 --epochs 40 --batch-size 16 --log-interval 50
--num-points 400 --plr 0.0004 --lr 0.0004
--sigma-file sigma_bunny_quick.csv --image-width 128
--image-height 128 --max-trans 0.25
\end{lstlisting}

\textbf{2022-05-04-2}
\begin{lstlisting}
# branch  graph
#git reset --hard  eda9f4eb24a46df9371575498449567be09a24e5
python ../train.py --savedir ../../runs/2022_05_04_2
--normalise-basic --train-size 40000 --test-size 400
--valid-size 100 --objpath ../objs/worm_simple2.obj
--save-stats --buffer-size 16 --epochs 40 --batch-size 16
--log-interval 100 --save-interval 400 --lr 0.001
--sigma-file sigma_worm_big.csv --image-width 128
--image-height 128 --max-trans 0.25
--graph-path ../objs/worm_graph2.obj
\end{lstlisting}

\textbf{2022-05-17}
\begin{lstlisting}
# branch  graph
#git reset --hard  2a1ae05af60617d4885ab5ae8aa6ee75235ebe06
python ../train.py --savedir ../../runs/2022_05_17
--normalise-basic --train-size 40000 --test-size 400
--valid-size 100 --objpath ../objs/worm_simple2.obj
--save-stats --buffer-size 16 --epochs 120 --batch-size 16
--log-interval 200 --save-interval 800 --lr 0.001
--sigma-file sigma_worm_quick.csv --image-width 128
--image-height 128 --max-trans 0.25
--graph-path ../objs/worm_graph2.obj
\end{lstlisting}

\textbf{2022-05-17}
\begin{lstlisting}
# branch  master
#git reset --hard  b0d1a0e2fe697c86a5f64f87eed0cdf212db87e7
python train.py --batch-size 8 --epochs 40 --lr 0.0004
--plr 0.0004 --save-stats --normalise-basic --max-trans 0.5
--log-interval 100 --save-interval 500
--savedir ../runs/nope_2022_06_22 --sigma-file sigma_short.csv
--objpath ./objs/worm_spheres.obj --train-size 40000
--test-size 100 --valid-size 50 --image-width 128
--image-height 128 --image-depth 16 --buffer-size 32
\end{lstlisting}

\textbf{2022-06-30}
\begin{lstlisting}
# branch  silhouette
#git reset --hard  b071e9ac45a3d9bfe036bf811fb786b88ff2bce4
python ../train.py --savedir ../../runs/2022_06_30
--save-interval 800 --train-size 10000 --test-size 400
--valid-size 50 --poseonly --objpath ../objs/worm_simple.obj
--fitspath /phd/wormz/queelim/dataset_aug5 --save-stats
--buffer-size 8 --epochs 60 --batch-size 8 --log-interval 100
--num-points 400 --lr 0.0004 --sigma-file sigma_worm_big.csv
--image-width 200 --image-height 200 --max-trans 0.5
\end{lstlisting}

\textbf{2022-07-23}
\begin{lstlisting}
# branch  master
#git reset --hard  2b8488da583d30147398375f7451d557b1c5909b
python ../train.py --savedir ../../runs/2022_07_23
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350 
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-07-24}
\begin{lstlisting}
# branch  6dof
#git reset --hard  0b0e461c3b98bcdbd977850d5e7a00440ef3ae07
python ../train.py --savedir ../../runs/2022_07_24
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.0004 --lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-07-25}
\begin{lstlisting}
# branch  6dof
#git reset --hard  0b0e461c3b98bcdbd977850d5e7a00440ef3ae07
python ../train.py --savedir ../../runs/2022_07_25
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --nosigmapredict --poseonly
--log-interval 100 --num-points 350 --plr 0.0004 
--lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-07-25-2}
\begin{lstlisting}
# branch  master
#git reset --hard  2b8488da583d30147398375f7451d557b1c5909b
python ../train.py --savedir ../../runs/2022_07_25_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 40 --batch-size 32
--normalise-basic --nosigmapredict --poseonly
--log-interval 100 --num-points 350 --plr 0.0004 
--lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-07-25-3d}
\begin{lstlisting}
#git reset --hard  60d463a58c1fecf7955f51aceaa06d21db46568e
python train.py --batch-size 4 --epochs 40 --lr 0.0004
--save-stats --normalise-basic --poseonly --max-trans 0.5
--log-interval 100 --save-interval 500
--savedir ../runs/nope_2022_07_25
--sigma-file sigma_bunny_quick.csv
--objpath ./objs/bunny_large.obj
--startobjs ./objs/bunny_large.obj --train-size 40000
--test-size 100 --valid-size 50 --image-width 128
--image-height 128 --image-depth 16 --buffer-size 32
\end{lstlisting}

\textbf{2022-07-28}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_07_28
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 8 --batch-size 32
--normalise-basic --nosigmapredict --poseonly
--log-interval 100 --num-points 350 --plr 0.0004
--lr 0.0004 --sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-07-28-3}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_07_28_3
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120 
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 8 --batch-size 32
--normalise-basic --nosigmapredict --poseonly
--log-interval 100 --num-points 350 --plr 0.0004
--lr 0.0004 --sigma-file sigma_bunny_six.csv
\end{lstlisting}

\textbf{2022-07-31}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_07_31
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_bunny_six2.csv
\end{lstlisting}

\textbf{2022-08-01-2}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_01_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_bunny_six4.csv
\end{lstlisting}

\textbf{2022-08-03-2}
\begin{lstlisting}
# branch  master
#git reset --hard  16ece95e4e9aa727b92b085d401e12bd9526bbc1
python ../train.py --savedir ../../runs/2022_08_03_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 8 --batch-size 32
--normalise-basic --nosigmapredict --poseonly
--log-interval 100 --num-points 350 --plr 0.0004
--lr 0.0004 --sigma-file sigma_bunny_six.csv
\end{lstlisting}

\textbf{2022-08-06}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_06
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 10 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_bunny_grad1.csv
\end{lstlisting}

\textbf{2022-08-08}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_08
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004
--sigma-file sigma_bunny_grad1.csv
\end{lstlisting}

\textbf{2022-08-08-2}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_08_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004
--sigma-file sigma_bunny_quick.csv
\end{lstlisting}

\textbf{2022-08-08-3}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_08_3
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 10 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_bunny_grad2.csv
\end{lstlisting}

\textbf{2022-08-08-4}
\begin{lstlisting}
# branch  6dof
#git reset --hard  d779501050344d7d5eb4de7e704247f829d7dc06
python ../train.py --savedir ../../runs/2022_08_08_4
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny_large.obj --save-stats
--buffer-size 32 --epochs 20 --batch-size 32
--normalise-basic --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_bunny_grad3.csv
\end{lstlisting}

\textbf{2022-08-10-2}
\begin{lstlisting}
# branch  master
#git reset --hard  8a2769df813ad3e31880c9b673a7ea2cfa10132c
python ../train.py --savedir ../../runs/2022_08_10_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 20 --batch-size 32 --normalise-basic
--log-interval 100 --num-points 350 --plr 0.0004
--lr 0.0004 --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-12-4}
\begin{lstlisting}
# branch  master
#git reset --hard  f3e938dd49ccfce9b46d4adedc3f7bfbe652a30a
python ../train.py --savedir ../../runs/2022_08_12_4
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --startpoints ../objs/bunny.obj
--poseonly --save-stats --buffer-size 32 --epochs 20
--batch-size 32 --normalise-basic --max-stretch 1.0
--log-interval 100 --num-points 350 --plr 0.001
--lr 0.0004 --stretch --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-15}
\begin{lstlisting}
# branch  master
#git reset --hard  f3e938dd49ccfce9b46d4adedc3f7bfbe652a30a
python ../train.py --savedir ../../runs/2022_08_15
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --startpoints ../objs/bunny.obj
--poseonly --save-stats --buffer-size 32 --epochs 40
--batch-size 32 --normalise-basic --max-stretch 1.0
--log-interval 100 --num-points 350 --plr 0.001
--lr 0.0004 --stretch --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-16-2}
\begin{lstlisting}
# branch  master
#git reset --hard  e497cfb705326b465cd3d818cd7a5086bbc9922a
python ../train.py --savedir ../../runs/2022_08_16_2
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 40 --batch-size 32 --normalise-basic
--max-stretch 0.5 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --stretch
--sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-16-4}
\begin{lstlisting}
# branch  master
#git reset --hard  67f3a06171b96c34c2e87469501cd29e2f79dd3e
python ../train.py --savedir ../../runs/2022_08_16_4
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 40 --batch-size 32 --normalise-basic
--max-stretch 0.5 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --stretch
--sigma-file sigma_base.csv
\end{lstlisting}

\textbf{pore-2022-08-17}
\begin{lstlisting}
# branch  master
#git reset --hard  a25be1d417c1b1f8bd4d44b723d9584a236ae898
python ../train.py --savedir ../../runs/pore_2022_08_17
--save-interval 800 --train-size 1800 --test-size 80
--valid-size 20 --fitspath /phd/npore/dataset_2022_01_18
--preblur --save-stats --buffer-size 16 --epochs 80
--batch-size 16 --log-interval 100 --lr 0.001
--plr 0.0004 --image-width 52 --image-height 52
--max-trans 0.5
\end{lstlisting}

\textbf{2022-08-18}
\begin{lstlisting}
# branch  master
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/2022_08_18
--save-interval 800 --train-size 2600 --test-size 100
--valid-size 50 --fitspath /phd/wormz/queelim/dataset_2d_basic
--file-filter layered --save-stats --buffer-size 16 --epochs 80
--batch-size 16 --log-interval 100 --stretch
--startpoints ../objs/worm_estimation.obj --normalise-basic
--poseonly --lr 0.001 --sigma-file sigma_worm.csv
--image-width 200 --image-height 200 --max-trans 0.5
--max-stretch 0.25
\end{lstlisting}

\textbf{2022-08-18-2}
\begin{lstlisting}
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/2022_08_18_2
--save-interval 800 --train-size 2600 --test-size 100
--valid-size 50 --fitspath /phd/wormz/queelim/dataset_2d_basic
--file-filter layered --save-stats --buffer-size 16 --epochs 80 
--batch-size 16 --log-interval 100 --stretch
--startpoints ../objs/worm_estimation.obj --normalise-basic
--plr 0.0001 --lr 0.001 --sigma-file sigma_worm.csv
--image-width 200 --image-height 200 --max-trans 0.5
--max-stretch 0.5
\end{lstlisting}

\textbf{2022-08-18-3}
\begin{lstlisting}
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/2022_08_18_3
--save-interval 800 --train-size 26000 --test-size 200
--valid-size 50 --fitspath /phd/wormz/queelim/dataset_2d_aug
--file-filter layered --save-stats --buffer-size 16
--epochs 20 --batch-size 16 --log-interval 100 --stretch
--startpoints ../objs/worm_estimation.obj --normalise-basic
--plr 0.0001 --lr 0.001 --sigma-file sigma_worm.csv
--image-width 200 --image-height 200 --max-trans 0.5
--max-stretch 0.5
\end{lstlisting}

\textbf{2022-08-18-4}
\begin{lstlisting}
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/2022_08_18_4
--save-interval 800 --train-size 26000 --test-size 100
--valid-size 50 --fitspath /phd/wormz/queelim/dataset_2d_aug
--file-filter layered --save-stats --buffer-size 16
--epochs 40 --batch-size 16 --log-interval 100 --stretch
--startpoints ../objs/worm_estimation.obj --normalise-basic
--poseonly --lr 0.001 --sigma-file sigma_worm.csv
--image-width 200 --image-height 200 --max-trans 0.5
--max-stretch 0.5
\end{lstlisting}

\textbf{pore-2022-08-19}
\begin{lstlisting}
# branch  master
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/pore_2022_08_19
--save-interval 800 --train-size 1800 --test-size 80
--valid-size 20 --fitspath /phd/npore/dataset_2022_01_18/0.0
--sigma-file sigma_pore.csv --save-stats --normalise-basic
--buffer-size 16 --epochs 80 --batch-size 16
--log-interval 100 --lr 0.001 --plr 0.0004 
--startspread 0.5 --image-width 52 --image-height 52
--max-trans 0.5
\end{lstlisting}

\textbf{pore-2022-08-22}
\begin{lstlisting}
# branch  master
#git reset --hard  01d77cd415c98ce9c275b34a32e1996b6bb3b1ab
python ../train.py --savedir ../../runs/pore_2022_08_22
--save-interval 800 --train-size 1800 --test-size 80
--valid-size 20 --fitspath /phd/npore/dataset_2022_01_18/0.0
--sigma-file sigma_pore.csv --save-stats --normalise-basic
--buffer-size 16 --epochs 80 --batch-size 16
--log-interval 100 --lr 0.001 --plr 0.0004
--startspread 0.5 --image-width 52 --image-height 52
--max-trans 0.5
\end{lstlisting}

\textbf{2022-08-25-5}
\begin{lstlisting}
# branch  master
#git reset --hard  9c985a86a5a579f4819a3232cfff62af322499db
python ../train.py --savedir ../../runs/2022_08_25_5
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 20 --batch-size 32 --normalise-basic
--max-trans 0.1 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-25-6}
\begin{lstlisting}
# branch  master
#git reset --hard  9c985a86a5a579f4819a3232cfff62af322499db
python ../train.py --savedir ../../runs/2022_08_25_6
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 20 --batch-size 32 --normalise-basic
--max-trans 0.2 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-25-7}
\begin{lstlisting}
# branch  master
#git reset --hard  9c985a86a5a579f4819a3232cfff62af322499db
python ../train.py --savedir ../../runs/2022_08_25_7
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 30 --batch-size 32 --normalise-basic
--max-trans 0.2 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-25-8}
\begin{lstlisting}
# branch  master
#git reset --hard  9c985a86a5a579f4819a3232cfff62af322499db
python ../train.py --savedir ../../runs/2022_08_25_8
--save-interval 800 --train-size 40000 --image-width 128
--image-height 128 --test-size 200 --valid-size 120
--objpath ../objs/bunny.obj --save-stats --buffer-size 32
--epochs 40 --batch-size 32 --normalise-basic
--max-trans 0.3 --log-interval 100 --num-points 350
--plr 0.001 --lr 0.0004 --sigma-file sigma_base.csv
\end{lstlisting}

\textbf{2022-08-31-3d}
\begin{lstlisting}
# branch  master
#git reset --hard  f76d6c298965f0be7a8c19ccd6a235ca9b0a9883
python train.py --batch-size 2 --epochs 20 --lr 0.0004
--plr 0.001 --num-points 200 --save-stats --normalise-basic
--max-trans 0.1 --log-interval 800 --save-interval 1600
--savedir ../runs/nope_2022_08_31
--sigma-file sigma_base.csv --objpath ./objs/bunny.obj
--predict-sigma --train-size 40000 --test-size 100
--valid-size 50 --image-width 128 --image-height 128
--image-depth 32 --buffer-size 8
\end{lstlisting}

\textbf{2022-09-01}
\begin{lstlisting}
# branch  master
#git reset --hard  88bc74539ab997267366333abaa56c0453697706
python train.py --batch-size 2 --epochs 20 --lr 0.0004
--plr 0.001 --num-points 200 --save-stats --normalise-basic
--max-trans 0.1 --log-interval 800 --save-interval 1600
--savedir ../runs/nope_2022_09_01 --stretch
--max-stretch 0.5 --sigma-file sigma_base.csv
--objpath ./objs/bunny.obj --train-size 40000
--test-size 100 --valid-size 50 --image-width 128
--image-height 128 --image-depth 32 --buffer-size 8
\end{lstlisting}

\textbf{worms-2022-09-02}
\begin{lstlisting}
#!/bin/bash
# branch  multi3d
#git reset --hard  48e21bddd770c156eaee177462da7422fe78af57
python train_unet.py
--image-path /phd/wormz/queelim/dataset_24_09_2021
--savedir ../runs/wormz_2022_09_02 --batch-size 2
--log-interval 10 --save-interval 100 --train-size 2800
--test-size 100 --valid-size 33 --epochs 20 --lr 0.001
\end{lstlisting}

\textbf{2022-09-19}
\begin{lstlisting}
# branch  master
#git reset --hard  d991e0d1172a2d0e175854d3a0a6e9afcec1134e
python train.py --batch-size 2 --epochs 20 --lr 0.0004
--plr 0.001 --num-points 200 --save-stats --normalise-basic
--max-trans 0.1 --log-interval 800 --save-interval 1600
--savedir ../runs/nope_2022_09_29 --sigma-file sigma_base.csv
--objpath ./objs/bunny.obj --predict-sigma --train-size 40000
--test-size 100 --valid-size 50 --image-width 128
--image-height 128 --image-depth 32 --buffer-size 8
\end{lstlisting}

\textbf{worms-2022-09-19}
\begin{lstlisting}
#  ../runs/wormz_2022_09_19
# branch  master
#git reset --hard  99b0bbd234911d5b7c9836f3f2c10cdb73003534
python train_unet.py
--image-path /phd/wormz/queelim/dataset_3d_basic_noresize
--savedir ../runs/wormz_2022_09_19 --batch-size 2
--log-interval 10 --save-interval 100 --train-size 2600
--test-size 120 --valid-size 56 --epochs 20 --lr 0.001
\end{lstlisting}

\textbf{worms-2022-10-03}
\begin{lstlisting}

#git reset --hard  f0abd33e136b6303cb1b7ed6c1140027dfdb75cd
python train_unet.py
--image-path /phd/wormz/queelim/dataset_3d_aug
--savedir ../runs/wormz_2022_10_03 --batch-size 2
--log-interval 10 --save-interval 100 --train-size 55000
--test-size 400 --valid-size 120 --epochs 20 --lr 0.001
\end{lstlisting}

\textbf{worms-2022-10-13}
\begin{lstlisting}
# branch  master
#git reset --hard  9961396a6a56056afc9bc9bfe69e4e1ebca56441
python train_unet.py
--image-path /phd/wormz/queelim/dataset_3d_all
--savedir ../runs/wormz_2022_10_13 --batch-size 2
--log-interval 10 --save-interval 100 --train-size 27300
--test-size 400 --valid-size 60 --epochs 20 --lr 0.001
\end{lstlisting}

\textbf{worms-2022-10-24-3}
\begin{lstlisting}
# branch  master
#git reset --hard  337d5aa6a437fb99cd0a3c1a319db498ac1b4318
python ../train.py --savedir ../../runs/2022_10_24_3
--save-interval 800 --train-size 26000 --test-size 100
--valid-size 50
--fitspath /phd/wormz/queelim/dataset_2d_all_autonoise
--file-filter layered --save-stats --buffer-size 16
--epochs 20 --batch-size 16 --log-interval 100 --stretch
--startpoints ../objs/worm_derived2.obj --normalise-basic
--poseonly --lr 0.001 --sigma-file sigma_worm.csv
--image-width 200 --image-height 200 --max-trans 0.5
--max-stretch 0.5
\end{lstlisting}

\textbf{worms-2022-10-26}
\begin{lstlisting}
# branch  master
#git reset --hard  9fcb9300bc7e0f74c3666ec1ac0e365897a296b5
python train_unet.py
--image-path /phd/wormz/queelim/dataset_3d_basic_noresize
--savedir ../runs/wormz_2022_10_26 --batch-size 2
--log-interval 10 --save-interval 100 --train-size 2240
--test-size 560 --valid-size 23 --epochs 20 --lr 0.001
\end{lstlisting}

\textbf{worms-2022-10-31}
\begin{lstlisting}
# branch  master
#git reset --hard  0860ab1346d8b5c8ffe9b4985b4c32fe3b69027d
python ../train.py --savedir ../../runs/2022_10_31
--save-interval 800 --train-size 26000 --test-size 100
--valid-size 50
--fitspath /phd/wormz/queelim/dataset_2d_all_extreme
--file-filter layered --save-stats --buffer-size 16
--epochs 40 --batch-size 16 --log-interval 100 --stretch
--normalise-basic --plr 0.001 --lr 0.001
--sigma-file sigma_worm_big.csv --image-width 200
--image-height 200 --max-trans 0.5 --max-stretch 0.5
\end{lstlisting}

\textbf{worms-2022-11-07}
\begin{lstlisting}
# branch  master
#git reset --hard  a2bc37c4a86624a18f3b76d3f548fcc188d80b49
python train.py --batch-size 2 --epochs 20 --lr 0.001
--plr 0.001 --save-stats --normalise-basic --max-trans 0.1
--log-interval 800 --save-interval 1600
--savedir ../runs/nope_2022_11_07 --sigma-file sigma_base.csv
--fitspath /phd/wormz/queelim/dataset_3d_all_autonoise
--predict-sigma --train-size 27000 --test-size 400
--valid-size 50 --image-width 200 --image-height 200
--image-depth 51 --buffer-size 2 --num-points 70 --stretch
--max-stretch 0.5
\end{lstlisting}

\textbf{worms-2022-12-04}
\begin{lstlisting}
# branch  master
#git reset --hard  64f1f2282b2b07c7e1158587ae5e97e30892fdf7
python train.py --batch-size 10 --epochs 80 --lr 0.0004
--plr 0.0004 --save-stats --normalise-basic --write-fits 
--fitspath /home/oni/Projects/PhD/dataset_3d_megaextreme_all_small
--max-trans 0.5 --log-interval 400 --save-interval 1200
--savedir ../runs/nope_2022_12_04
--sigma-file sigma_worm_quick.csv --predict-sigma
--train-size 26000 --test-size 200 --valid-size 50
--image-width 100 --image-height 100 --image-depth 25
--buffer-size 20 --num-points 160
\end{lstlisting}

\textbf{worms-2022-12-05}
\begin{lstlisting}
# branch  master
#git reset --hard  64f1f2282b2b07c7e1158587ae5e97e30892fdf7
python train.py --batch-size 10 --epochs 80 --lr 0.0004
--plr 0.001 --save-stats --normalise-basic
--fitspath /home/oni/Projects/PhD/dataset_3d_deconv_small
--max-trans 0.25 --log-interval 200 --save-interval 600
--savedir ../runs/nope_2022_12_05 --sigma-file sigma_worm.csv
--predict-sigma --train-size 2600 --test-size 100
--valid-size 50 --image-width 100 --image-height 100
--image-depth 25 --buffer-size 20 --num-points 160
\end{lstlisting}

\textbf{worms-2022-12-05-2}
\begin{lstlisting}
# branch  master
#git reset --hard  64f1f2282b2b07c7e1158587ae5e97e30892fdf7
python train.py --batch-size 10 --epochs 20 --lr 0.0004
--plr 0.001 --save-stats --normalise-basic
--fitspath /home/oni/Projects/PhD/dataset_3d_all_small
--max-trans 0.25 --log-interval 200 --save-interval 600
--savedir ../runs/nope_2022_12_05_2
--sigma-file sigma_worm.csv --predict-sigma
--train-size 26000 --test-size 100 --valid-size 50
--image-width 100 --image-height 100 --image-depth 25
--buffer-size 20 --num-points 160
\end{lstlisting}

\textbf{worms-2022-12-09-3}
\begin{lstlisting}
#git reset --hard  652eb6135d0903f0f69c389ff483ff43ea1739a3
python train.py --batch-size 10 --epochs 80 --lr 0.0004
--plr 0.001 --save-stats --write-fits --normalise-basic
--fitspath /home/oni/Projects/PhD/dataset_3d_all_small
--submask --max-trans 0.25 --log-interval 200
--save-interval 600 --savedir ../runs/nope_2022_12_09_3
--sigma-file sigma_worm.csv --predict-sigma --submask
--train-size 26000 --test-size 100 --valid-size 50
--image-width 100 --image-height 100 --image-depth 25
--buffer-size 20 --num-points 160
\end{lstlisting}

\textbf{worms-2022-12-13-2}
\begin{lstlisting}
# branch  masked
#git reset --hard  4a5429dd24c1156d2ade56fd51a052eed271cad4
python train.py --batch-size 10 --epochs 60 --lr 0.0004
--plr 0.0004 --save-stats --write-fits --normalise-basic
--fitspath /home/oni/Projects/PhD/dataset_3d_extreme_all_small
--submask --max-trans 0.25 --stretch --max-stretch 0.5
--log-interval 200 --save-interval 600
--savedir ../runs/nope_2022_12_13_2 --poseonly
--startobjs ./objs/worm_spheres3.obj
--sigma-file sigma_worm_fixed.csv --predict-sigma
--train-size 26000 --test-size 100 --valid-size 50
--image-width 100 --image-height 100 --image-depth 25
--buffer-size 20 --num-points 160
\end{lstlisting}

\section{Input Sigma parameters}
\label{appendix:input_sigma}

Figure \ref{img:sigma_curves} plots the input-sigma schedules used in every experiment within this thesis.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/sigma_curves.png}
\caption{A plot of all the input-sigma schedules used throughout this thesis. The names in the legend correspond to the \emph{--sigma-file} parameter listed in each run in appendix \ref{appendix:experiments}. The number of steps is arbitrary, each schedule is set to start and finish at fixed values.}
\label{img:sigma_curves}
\end{figure}

\section{Deconvolution kernel paramaters}
\label{appendix:psf_params}
The parameters used to generate our deconvolution kernel (or PSF), used in the \emph{C. elegans} experiments are listed below.

\begin{lstlisting}
Born and Wolf 3D Optical Model
Refractive index immersion 1.5 ni
Wavelength 610nm
NA 1.3
Pixelsize XY 323nm
Z-Step 2000nm
Size XYZ 64 64 16
Display Linear 32 bits Fire
\end{lstlisting}

\section{\emph{C. elegans} Datasets}
\label{appendix:celegans}

All versions of the \emph{C. elegans} dataset are derived from a number of experiments, collected into two directories: \emph{mCherry} and \emph{mCherry2}. 

The following sections decribe each dataset, listed with the name used in the experiment configuration files from appendix \ref{appendix:experiments}.

\subsubsection{dataset\_24\_09\_2021}
\begin{itemize}
    \item 3239 items.
    \item No ROI or resize - kept to 640 x 300 x 51.
    \item No background subtraction.
\end{itemize}

\subsubsection{dataset\_roi}
\begin{itemize}
    \item 3248 items.
    \item \gls{ROI} selection.
    \item Resized to 128 x 128 x 25
\end{itemize}

\subsubsection{dataset\_2d\_all\_autonoise}
\begin{itemize}
    \item 27760 items.
    \item Deconvolved (5 rounds).
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200 x 51.
    \item Automatic, per image background removal.
    \item Augmented 10 times.
\end{itemize}

\subsubsection{dataset\_2d\_aug}
\begin{itemize}
    \item 27760 items.
    \item augmented 10 times with 3D rotation.
    \item No interpolation along the Z axis.
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200 x 51.
    \item Background subtraction 270.
\end{itemize}

\subsubsection{dataset\_2d\_all\_extreme}
\begin{itemize}
    \item 27760 items.
    \item Deconvolved (8 rounds)
    \item Augmented 10 times with 3D rotation.
    \item No interpolation along the Z axis.
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200.
    \item Background subtraction 303.
    \item Sum projection to 2D.
\end{itemize}

\subsubsection{dataset\_3d\_aug}
\begin{itemize}
    \item 55520 items
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200 x 51.
    \item Background subtraction 270.
    \item Augmented 20 times.
\end{itemize}

\subsubsection{dataset\_3d\_all}
\begin{itemize}
    \item 27760 items.
    \item Deconvolved (5 rounds).
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200 x 51.
    \item Background subtraction 270.
    \item Augmented 10 times.
\end{itemize}

\subsubsection{dataset\_3d\_basic\_noresize}
\begin{itemize}
    \item 2823 items.
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200 x 51.
    \item Background subtraction 270.
\end{itemize}

\subsubsection{dataset\_3d\_megaextreme\_all\_small}
\begin{itemize}
    \item 27740 items.
    \item Deconvolved (8 rounds).
    \item \gls{ROI} selection.
    \item Resized - 100 x 100 x 25.
    \item Background subtraction 303.
    \item Augmented 10 times.
\end{itemize}

\subsubsection{dataset\_3d\_deconv\_small}
\begin{itemize}
    \item 2774 items.
    \item Deconvolved (5 rounds).
    \item \gls{ROI} selection.
    \item Resized - 100 x 100 x 25.
    \item Background subtraction 303.
\end{itemize}

\subsubsection{dataset\_3d\_all\_small}
\begin{itemize}
    \item 27740 items.
    \item Deconvolved (5 rounds).
    \item \gls{ROI} selection.
    \item Resized - 100 x 100 x 25.
    \item Automatic, per image background subtraction.
    \item Augmented 10 times.
\end{itemize}

\subsubsection{dataset\_aug5}
\begin{itemize}
    \item 18640 items
    \item \gls{ROI} selection.
    \item No resize - kept to 200 x 200.
    \item Background subtraction 270.
    \item Augmented 10 times.
    \item Sum projection - 2D dataset.
\end{itemize}
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\section{Code}
\label{appendix:code}
Various programs were used through-out this thesis and are available online from the following git repositories:

\begin{itemize}
    \item HOLLy - \url{https://github.com/OniDaito/HOLLy}
    \item 3D HOLLy - \url{https://github.com/OniDaito/nope}
    \item CEPrender - convert STORM data to images - \url{https://github.com/OniDaito/CEPrender}
    \item U-Net for \emph{C. elegans} - \url{https://github.com/OniDaito/sea_elegance}
    \item Wiggle - \url{https://github.com/OniDaito/wiggle}
    \item Pore-Favor - \url{https://github.com/OniDaito/pore_favor}
\end{itemize}

\section{Experimental Datasets}
\label{appendix:data}
A number of experimental datasets were kindly made available to us. Many of these are available to download, though some require a certain amount of processing.

\begin{itemize}
    \item CEP152 - the converted FITs images for use with HOLLy - \url{https://zenodo.org/record/4751057}
    \item Glutamylated Tubulin - \url{https://zenodo.org/record/3613906}
    \item Nuclear Pore Dataset - \url{https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD8}
\end{itemize}
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\chapter{Supplementary material from Chapter \ref{chapter:holly}}
\label{appendix:suppaper}

Chapter \ref{chapter:holly} was originally published in the journal \emph{Frontiers} under the title \emph{3D Structure from 2D Microscopy images using Deep Learning}. This appendix consists of the supplementary data originally published.

\section{HOLLy Technical Details}

Our method relies upon three major components: a convolutional neural network, a vertex tensor representing the structure used internally and a differentiable renderer. The neural network is responsible for generating the parameters required by the renderer from a batch of input images. These parameters are combined with the set of points held in the vertex tensor and passed to the renderer, whereupon an output image is produced. The differentiable renderer is a simplified 3D rasterisation pipeline of transformation matrices, though the perspective matrix is omitted as our microscopy images do not show any apparent change due to distance from the camera. Several advanced, differentiable renderers already exist though they are designed to render polygons instead of Gaussian-blurred points. This set of transformation matrices is completely differentiable allowing for error gradients to pass backward from the loss function through the pipeline.

Neural networks learn through back-propagating the error (or loss) between the expected output and the generated output. This loss is produced by a loss function - typically the Least Squared Error (or L2) loss.  We chose the Least Absolute Deviations (or L1) loss on the pixel values of the input and output image batches. L1 was chosen as it has been shown to outperform the more common L2 on pixel comparison tasks. The loss is sent to the Adaptive Moment Estimation (Adam) stochastic optimiser \citep{Kingma2014AdamAM} in order to update the network weights and the positions of the points in our structure set.

Our network consists of 10 convolutional layers and two fully connected layers. Leaky ReLU (Rectified Linear Unit) is the activation function used at each layer except the final output layer. The output layer comprises the rotational and translational parameters, and in certain experiments, the predicted sigma value, discussed in the experiment section. Each convolutional layer uses batch normalisation \citep{ioffeBatchNormalizationAccelerating2015a}. The first convolutional kernel is 5 by 5 pixels, with all subsequent kernels being 3 by 3 pixels. A padding size of 2 and a stride of 2 are used. After the first layer, the subsequent layers come in pairs - the first having a stride of two, the second having a stride of 1. This performs a similar operation to a pooling layer. The final convolutional layer performs a final pooling with it's stride of 2.

The vertex tensor consists of a number of points in 3D space, represented in homogeneous coordinates (x, y, z and w). The size of this set is chosen by the user to best match the integrated density of the input data. When no normalisation strategy is applied, each individual point has an intensity of 1. Network performance is highly dependent on the size of this set. Therefore there is a trade-off between model accuracy and speed, with memory requirements scaling significantly with the number of points requested. The number of points is a so-called \lq hyper-parameter\rq, along with other hyper-parameters such as the learning rate and batch size.

The network predicts between 3 and 6 continuous parameters - depending on the options chosen by the user. The orientation is represented in \lq Angle-Axis\rq \ format:
3 real numbers for the rotation axis with the magnitude representing the angle. These are unchanged and passed to the renderer directly from the neural network. Translation in the X-Y plane is restricted via a \emph{tanh} function, which has the effect of limiting very large movements. Translation is restricted to -0.1 to 0.1. The final parameter is the sigma value used to render the output images. Output sigma is clamped to a maximum of 14 and is passed through a Softplus function.

The output of the renderer is a batch of images. Each fluorophore in the image is represented as a 2D Gaussian with a particular sigma (Equation \ref{eq_gaussian}). The input data is rendered with a sigma value chosen by the user. The output data generated by the network can either have its sigma value derived by the network or also set by the user. A large sigma - for example 10.0 - results in a very blurry image, with each point having a Full Width at Half Maximum (FWHM) of 138 pixels, whereas a sigma of 1.2 has a FWHM of 2 pixels. The network begins training on images rendered with a large sigma, progressing to a smaller sigma as training continues. This leads to better convergence as large changes in pixel intensity across the image are not present, providing smoother gradients over large distances. Initially, points are able to move further, refining their positions with smaller movements later in the training.

\begin{equation} \label{eq_gaussian}
G(x, y) = \frac{1}{2\pi\sigma^{2}}e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}
\end{equation}

\section{Converting MATLAB SMLM data}

The program used to convert the experimental STORM CEP152 data into a series of FITS images can be found on GitHub\footnote{ \label{ceprender_url}\url{https://github.com/onidaito/ceprender/}}. It uses the same rendering pipeline as the differentiable renderer found in HOLLy.

Generating a set of training images to replicate our results takes roughly 3 days on a AMD Ryzen Threadripper 1920X (24) running at 3.500GHz.

\section{Input-sigma Hyper-parameter.}

The two input-sigma profiles are shown in Figure \ref{fig:sigma_curves}. We generated images on demand through training when using simulated point-clouds, therefore the input curve can be smoothly altered per training step as opposed to per-epoch. However, the experimental CEP152 data was rendered with discrete sigma values, therefore has a \lq stepped\rq \ curve.

%% More detail in the figure caption here
\begin{figure}
	\centering
	\includegraphics[width=0.8\textwidth]{images/sigma_curves.jpg}
	\caption{The input-sigma curve used in our experiments with simulated data models (A), STORM CEP152 data (B) and Expansion Microscopy CEP152 (C). The input-sigma in image C is the level of blur applied to images that already contain some unknown level of blur. The final value of 0 in image C is intentional; the images are being use with no additional blur.} 
	\label{fig:sigma_curves}
\end{figure}

\section{Final structure videos.}
To aid in visualising the final 3D structure of the STORM CEP152 complex as discerned by HOLLy, we have included a number of videos that show the final structure for each of the 5 experiments (Video S1), including the progression through training (Video S2).

Similarly, to aid in visualising the final 3D structure of the Expansion Microscopy Centrioles as discerned by HOLLy, we have included a number of videos that show the final structure for each of the 5 experiments (Video S3), including the progression through training (Video S4).

\begin{itemize}
    \item Video S1 - \href{https://www.frontiersin.org/articles/file/downloadfile/740342_supplementary-materials_videos_1_mp4/octet-stream/Video\%201.MP4/1/740342}{Available on the Frontiers Page} - Video 1 in included media
    \item Video S2 - \href{https://www.frontiersin.org/articles/file/downloadfile/740342_supplementary-materials_videos_2_mp4/octet-stream/Video\%202.MP4/1/740342}{Available on the Frontiers Page} - Video 2 in included media
    \item Video S3 - \href{https://www.frontiersin.org/articles/file/downloadfile/740342_supplementary-materials_videos_3_mp4/octet-stream/Video\%203.MP4/1/740342}{Available on the Frontiers Page} - Video 3 in included media
    \item Video S4 - \href{https://www.frontiersin.org/articles/file/downloadfile/740342_supplementary-materials_videos_4_mp4/octet-stream/Video\%204.MP4/1/740342}{Available on the Frontiers Page} - Video 4 in included media
\end{itemize}

\begin{figure}[H]
	\centering
	\includegraphics[width=0.8\textwidth]{images/cep152_2_52_sigma_random.jpg}
	\caption{A random selection of 100 images from the STORM CEP152 dataset, rendered with an input sigma of 2.52. This small sample is broadly representative of the 40,000 individual images within the training dataset.} 
	\label{fig:training}
\end{figure}

\pagebreak

\begin{figure}
	\centering
	\includegraphics[width=0.8\textwidth]{images/dora_images.jpg}
	\caption{A random selection of 100 images from the Expansion Microscopy Centriole dataset. This small sample is broadly representative of the 14,000 individual images within the training dataset. Note that these images are much smaller than these used in the simulated or STORM experiments.} 
	\label{fig:training_dora}
\end{figure}

\pagebreak

\section{Experiment parameters}

The key parameters for every experiment are listed below. Example parameters for the baseline experiments are included in the code-base, available online (see Code Availability Statement).\\

\subsection{Stanford Bunny Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Max. Input Sigma & Min Input Sigma \\ [0.5ex] 
 \hline
 1.A to 1.E & 40 & 0.0004 & 350 & 10 & 1.41 \\ 
 \hline
\end{tabular}
\end{center}

\subsection{Utah Teapot Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Max. Input Sigma & Min Input Sigma \\ [0.5ex] 
 \hline
 2.A to 2.E & 40 & 0.0004 & 230 & 10 & 1.41 \\ 
 \hline
\end{tabular}
\end{center}

\subsection{CEP152 Approximation Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Max. Input Sigma & Min Input Sigma \\ [0.5ex] 
 \hline
 3.A to 3.E & 40 & 0.0004 & 180 & 10 & 1.41 \\ 
 \hline
\end{tabular}
\end{center}

\subsection{Scatter Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Scatter & Max. Input Sigma & Min Input Sigma \\ [0.5ex] 
 \hline
 4.A & 40 & 0.0004 & 350 & 0.03 & 10 & 1.41 \\
 4.B & 40 & 0.0004 & 350 & 0.06 & 10 & 1.41 \\
 4.C & 40 & 0.0004 & 350 & 0.09 & 10 & 1.41 \\
 4.D & 40 & 0.0004 & 350 & 0.12 & 10 & 1.41 \\ 
 4.E & 40 & 0.0004 & 350 & 0.15 & 10 & 1.41 \\ 
\hline
\end{tabular}
\end{center}

\subsection{Drop-out Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Drop-out & Max. Input Sigma & Min Input Sigma \\ [0.5ex] 
 \hline
 5.A & 40 & 0.0004 & 350 & 0.1 & 10 & 1.41 \\
 5.B & 40 & 0.0004 & 350 & 0.3 & 10 & 1.41 \\
 5.C & 40 & 0.0004 & 350 & 0.5 & 10 & 1.41 \\
 5.D & 40 & 0.0004 & 350 & 0.7 & 10 & 1.41 \\ 
 5.E & 40 & 0.0004 & 350 & 0.9 & 10 & 1.41 \\ 
\hline
\end{tabular}
\end{center}

\subsection{Spawn Experiment parameters}
\begin{center}
\small
 \begin{tabular}{|c c c c c c c c|} 
 \hline
 Run & Epochs & Learning Rate & Num. of Points & Drop-out & Scatter & Max Spawn & Spawn Rate \\ [0.5ex] 
 \hline
 6.A & 40 & 0.0004 & 350 & 0.1 & 0.06 & 4 & 0.3 \\
 6.B & 40 & 0.0004 & 350 & 0.1 & 0.12 & 4 & 0.3 \\
 6.C & 40 & 0.0004 & 350 & 0.1 & 0.06 & 4 & 0.6 \\
 6.D & 40 & 0.0004 & 350 & 0.1 & 0.12 & 4 & 0.6 \\ 
 6.E & 40 & 0.0004 & 350 & 0.3 & 0.06 & 4 & 0.3 \\
 6.F & 40 & 0.0004 & 350 & 0.3 & 0.12 & 4 & 0.3 \\
 6.G & 40 & 0.0004 & 350 & 0.3 & 0.06 & 4 & 0.6 \\
 6.H & 40 & 0.0004 & 350 & 0.3 & 0.12 & 4 & 0.6 \\
\hline
\end{tabular}
\end{center}

\section{Direct Optimisation}

We tested whether or not we could directly optimise the pose parameters with no convolutional layers. We used the Utah Teapot and Stanford bunny models, no sigma prediction and the following parameters:

\begin{center}
\small
 \begin{tabular}{|c c c c c c c c|} 
 \hline
 Run & Model & Epoch & Learning Rate & Num. of Points & Max. Input S. & Min Input S. & Optimiser \\ [0.5ex] 
 \hline
 7.A & teapot & 100 & 0.0004 & 250 & 10 & 1.41 & Adam \\
 7.B & teapot & 100 & 0.004 & 250 & 10 & 1.41 & Adam \\
 7.C & bunny & 100 & 0.0004 & 350 & 10 & 1.41 & Adam \\
 7.D & bunny & 100 & 0.004 & 350 & 10 & 1.41 & Adam \\
 7.E & teapot & 100 & 0.0004 & 250 & 10 & 1.41 & SGD \\
 7.F & teapot & 100 & 0.004 & 250 & 10 & 1.41 & SGD \\
 7.G & bunny & 100 & 0.0004 & 350 & 10 & 1.41 & SGD \\
 7.H & bunny & 100 & 0.004 & 350 & 10 & 1.41 & SGD \\
 \hline
\end{tabular}
\end{center}

\pagebreak
We also performed a run with noise added, using the following parameters:

\begin{center}
\small
 \begin{tabular}{|c c c c c c c c c|} 
 \hline
 Run & S. Rate & Scatter & Epoch & LR & \# Points & Max. Input S. & Min Input S. & Optimiser \\ [0.5ex] 
 \hline
 7.I & 0.3 & 0.06 & 100 & 0.0004 & 350 & 10 & 1.41 & SGD \\

 \hline
\end{tabular}
\end{center}
\begin{figure}[H]
	\centering
	\includegraphics[width=0.8\textwidth]{images/direct.jpg}
	\caption{The final results from runs 7.A to 7.I - direct optimisations. Each row contains 6 pairs of images. The first image in each pair is the input image - the second is the corresponding output. Run 7.B appears to show a derived structure similar to the ground-truth, though this is misleading as the model only appears reasonable from one angle (viewing the final model in 3D shows this more clearly). Runs 7.F and 7.H fail to create any structure. Runs 7.E, 7.G and 7.I show some response to the different input rotations, whereas the remaining runs show very similar output poses.} 
	\label{fig:directA}
\end{figure}
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\chapter{Supplementary material (general)}
\section{Video}
\subsection{\emph{C. elegans image stack rotation}}
\label{appendix:video1}
\url{https://youtube.com/shorts/xOL78_NiW7w?feature=share}
See worm\_rotation.mp4 in the included media.
\pagebreak
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\begin{center}
    \vspace{2.9cm}
    This was a triumph.
    
I'm making a note here - \emph{huge success}.
\end{center}
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\chapter{Parameter choices, trust and performance}
\label{chapter:expand}
\section{Introduction}

Chapter \ref{chapter:holly} introduced our system - Hypothesised Objects from Light Localisations (HOLLy) - in the form of a published article. This chapter expands on the previous, discussing important details of HOLLy that were not published with Chapter \ref{chapter:holly}.

When constructing a deep learning network, a particular architecture, hyper-parameters, and loss functions must be chosen. Here we will explore the impact of different loss functions, normalisation, and hyper-parameters on HOLLy's performance.

A number of methods for analysing \gls{deep learning} networks have been proposed. We apply one of these - Layerwise Relevance Propagation \citep{montavonLayerWiseRelevancePropagation2019} - to HOLLy and discuss the results and the implications these results have on the reliability of the system.

A large section of this chapter is given over to the discussion of whether or not the neural-network component of HOLLy has \emph{learned} to predict pose, and how accurate these predictions are. Our methods for measuring the accuracy of this component are described, and the results of applying them to the various experiments discussed. Combining learning rotation with deriving structure results, rather than training for rotation alone, results in different performances which are highlighted. Common problems within the machine-learning field - such as over-training - may arise, and are addressed in this section. 

We explore the use of a new representation of rotation which is continuous over SO(3) and improves the convergence rate.

A large number of biological structures exhibit variation in structure, which we attempt to model as \emph{anisotropic scaling}. A number of extra parameters modelling a rigid scale transform were predicted by HOLLy in an attempt to better reflect the experimental CEP152/HsSAS-6 complex dataset. 

Finally, to further our claims that HOLLy is a general solution, we test HOLLy against a third experimental data-set consisting of nuclear pores, presenting our findings.

\section{Initialising the structure}
\label{sec:starting_points}
The points tensor contains a fixed number of points. This choice is made by the user before training starts. Chapter \ref{chapter:holly} shows how the number of points to optimise the final result. If normalisation is enabled, the network will still attempt to optimise the structure but the resolution (or detail) will be limited by the number of points. This number is ultimately limited by the amount of \gls{GPU} memory available.

The distribution of points has a considerable effect on the final structure. The majority of our experiments used a random distribution across a 3D volume, ranging from $-1$ to $1$ across each dimension. A random distribution should not present any large barriers for the learning algorithm to overcome - having a concentrated area of points would lead to high intensity values which would be more difficult to optimise. Figure \ref{img:2021_12_15} shows the final structure from experiment 2021-12-15 which distributes the initial points according to a Gaussian distribution, centred at the origin (with $\sigma=0.1$). The resulting structure is not recognisable, yielding an RMSD score of $0.18476$ when compared with the Stanford Bunny from which the training dataset was derived.

\begin{figure}[H]
\centering
\includegraphics[width=8cm]{images/ipspot.png}
\caption{The resulting structure when using a Gaussian distribution for the initial point positions. The network fails to resolve the Stanford Bunny correctly.}
\label{img:2021_12_15}
\end{figure}

Another approach, using a Poisson random distribution was also tested. This gave a result very similar to these given with a purely random distribution. 

Initial versions of HOLLy considered a world space ranging from $-2$ to $2$, therefore the default, random placement of points did not reach to the furthest extent possible. This did not cause any problems initially - in fact, placing points randomly across the entire space would produce poor result. Such experiments would show an \emph{explosive} like behaviour, where points that were already close to the periphery would proceed outwards, away from the origin and stay at just outside the field of view. Figure \ref{img:2022_08_09} shows the final structure from experiment 2022-08-09, where the random placement of points extended to the limits of world space. This particular example is exaggerated by the fact that the input-sigma (the effective blur on the input data) starts particularly low, thus the training data does not reach the periphery. No gradients exist in these areas to guide the points to a better location. We concluded that the initial position of the points should not extend into areas that are never occupied by data. In addition, even in experiments with a high initial input-sigma (and therefore data appearing across the entire field of view), points close to the periphery may occasionally be ejected. Therefore, extending close to, or past the world space boundary should also be avoided.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/2022_08_09.png}
\caption{The resulting structure when the initial point placement is randomly spread across the entiriety of the world-space. HOLLy has ejected a number of points to the periphery. The Stanford Bunny is only partially reconstructed, at the origin.}
\label{img:2022_08_09}
\end{figure}

\section{Dataset characteristics.}
Various aspects of the datasets are briefly discussed in Chapter \ref{chapter:holly}. In this section we expand on the key points: dataset size, augmentation and the biases the dataset may or may not have.

\subsection{Size}
The figure of 40,000 unique items is given as the default for the experiments in Chapter \ref{chapter:holly}. This figure was derived from a number of early experiments. The smallest dataset possible is often desired due to data availability and training time, but a dataset that is too small can adversely affect the network's generalisation, resulting in \emph{under-training}. While generalisability withing a single experiment is not a concern with HOLLy (we are optimising for a single object), small datasets resulted in poor structures. Table \ref{table:dataset_size} shows the results from 4 experiments on the Stanford Bunny with different sized training datasets. The final structure is compared to the ground-truth object, giving an RMSD score in the manner described in Chapter \ref{chapter:holly}. The parameters used in each experiment can be found in Appendix \ref{appendix:experiments}. 

It should be noted that the training dataset size has secondary effects on the system. A smaller training set will result in a shorter training time and a steeper input-sigma curve - vice-versa for a larger training set. The number of epochs must be adjusted accordingly so the overall training time does not change. However, this increases the risk of over-training as the network will train over the same inputs more often.

\begin{table}[H]
\begin{tabular}[t]{|c|c|c|c|c|}
\hline
Experiment & Training Set Size & Epochs & RMSD & Notes \\
\hline
2022-01-26-exp-ss-6 & 8000 & 200 & 0.113454 & \\
2022-01-26-exp-ss-7 & 16000 & 100 & 0.150074 & Mirrored\\
2022-01-26-exp-ss-8 & 32000 & 50 &  0.0787661 & Mirrored\\
2022-01-26-exp-ss-9 & 64000 & 25 & 0.0670246 & \\
\hline
\end{tabular}
\caption{The final predicted structure's RMSD score against different sizes of training sets.}
\label{table:dataset_size}
\end{table}

\subsection{Data augmentation}

Large datasets are not always available. While there is no theoretical limit to simulated data, experimental datasets are often smaller than forty-thousand items. Chapter \ref{chapter:holly} introduced the concept of \emph{data augmentation} - modifying existing data with simple transformations to increase the number of examples. Experimental data, represented as an image, can be rotated in the four cardinal directions, with 90, 180 and 270 degree rotations in the image plane. This avoids any artefacts due to re-sampling. STORM data - rendered to images from localisations - can be augmented by any angle around the image axis.

To test this approach, we augmented the simulated data - using both the 4 cardinal angles and a number of arbitrary rotations around the imaging axis (the Z axis in our camera system). Table \ref{table:aug_types} shows the RMSD results for these two augmentation approaches. Both scores are low, signifying good reconstruction of the ground-truth.

\begin{table}[H]
\centering
\begin{tabular}[t]{|c|c|c|c|}
\hline
Experiment & Training Set Size & Num. Aug. & RMSD \\
\hline
2022-02-09-aug & 10000 & 4 & 0.041 \\
2021-08-31-2 & 2000 & 20 & 0.061 \\
\hline
\end{tabular}
\caption{The final predicted structure's RMSD score against different augmentations.}
\label{table:aug_types}
\end{table}

These results suggest that augmenting experimental data through rotations around the viewing axis could improve structure and pose accuracy prediction - this is the method used in the previous chapter in order to obtain the CEP152/HsSAS-6 complex results presented.

\section{Sigma}
Recall from Chapter \ref{chapter:holly} the various sigma parameters used in HOLLy: the input-sigma, the output-sigma and the various sigma parameters associated with simulating the noise. The Gaussian distribution is used throughout HOLLy; from the modelling of the point spread function, to the random movement of the simulated fluorophores. Also recall from Chapter \ref{chapter:holly} that HOLLy can attempt to predict sigma from an input image. This section expands on the input-sigma and the effects that predicting the output-sigma has on the derived structure.

\subsection{Input-sigma}

Chapter \ref{chapter:holly} introduced the input-sigma - the parameter used in the Gaussian distribution representing the point-spread function. A larger input-sigma produces a wider spread of light, resulting in a blurred image. Lowering the sigma produces smaller, more intense points of light, resulting in a sharper image.

A large input-sigma value produces shallower gradients over a larger area of the resulting image. This is desirable during the earlier stages of training when the points within the matrix constituting our model are randomly distributed across a large volume of the problem space. At this point in the training, the points will be at their maximum distance from their optimum locations (on average), assuming that training improves the model. It is entirely possible that training may not converge (or become stuck in a local minima) where some of the points in the model have moved further away from the optimum position. Nevertheless, reducing the input-sigma as training progresses biases the neural network towards larger movements early in training, refining the model once the gross structure has been defined.

In Chapter \ref{chapter:holly} we introduced three \emph{input-sigma curves}. These curves describe how the input-sigma changes through training. The maximum and minimum values were selected based on data being modelled. Recall that the point-spread function is applied in image-space, not in world-space - that is the Gaussian representing the particular point is computed once the 2D image coordinate of the point has been determined. In the simulated cases, the input images were 128 by 128 pixels in size. An input-sigma of 10 would result in a single fluorophore having a full-width at half-maximum of 24 pixels, spanning  19\% of the view. Conversely, an input-sigma value of 1 would result in a fluorophore spanning only 2 pixels.

In the experimental datasets, the CEP152/HsSAS-6 complex images were also 128 by 128 pixels in size, therefore a similar range of input-sigma values were used. The Glutamylated Tubulin images are much smaller - 60 by 60 pixels, therefore a much smaller starting sigma of 2.8 was chosen. Unlike the CEP152/HsSAS-6 complex data - presented as a set of localisations - the tubulin dataset is already rendered as an image. The parameters of the point-spread function in these images was not known. It was assumed the sigma was quite high - or at the very least, not 1 - therefore our additional input-sigma was chosen to be quite low.

\subsubsection{Input-sigma scheduling}
\label{sec:choice_of_curve}
Initially, the lowest sigma was chosen to be 1.41 in the simulated experiments. This resulted in a spot with a \gls{FWHM} of 3 pixels for each localisation. The initial curve was chosen so that each epoch, the FWHM would reduce by 10\% consistently over the course of a training run. Both stepped and continuous curves could be selected at training time. In the case of the continuous curve, the input-sigma would be linearly interpolated after each training step.

Recall from section \ref{sec:reprot} that the accuracy of the network would increase up to a certain point in training - this point being correlated with a particular sigma value in all cases. As the input-sigma falls, the loss between two partially overlapping Gaussians increases until even tiny differences in pose prediction produce very large losses. Figure \ref{img:sigma_effect} shows this effect in more detail.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/sigma_effect.png}
\caption{The effect of the 1.41 input-sigma on the Utah Teapot model. Two models are overlaid in this image - the original in white, and a second in pink that has been rotated by 6 degrees around the X-axis only. Notice how the central bands no longer overlap even though the pose difference is tiny. This results in a high loss that is not reflective of the almost perfect alignment.}
\label{img:sigma_effect}
\end{figure}

Our original input-sigma curve began at 10 and ended at 1.41. At input-sigma 10, the Stanford Bunny model appears as an indistinguishable \emph{fuzzy blob}. Throughout the various HOLLy experiments it was noted that the derived structure initially contracts to match this shape then slowly progresses through an intermediate step of differentiating the body and head, then enters an inflection point where two heads and two pairs of ears are clearly visible. If training continues, a choice is often made resulting in either a correct or mirrored structure. The motivation for a high sigma at the beginning of training was to learn gross changes in structure and pose first, before refinement. But how high should the input sigma be set; could it be set lower than 10?

Furthermore, it was not clear how the \emph{gradient} of the sigma curve affected the final structure and pose prediction. One initial hypothesis was perhaps more time should be spent at the lower sigma levels, rapidly descending to lower blurring and more detail. To this end, a number of experiments were conducting with different sigma curves. Figure \ref{img:multi-sigma} shows the input-sigma curves for 6 experiments (see Appendix \ref{appendix:experiments} for details). 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/multi-sigma-curve.png}
\caption{The input sigma-curves for six experiments. Note that 2022-08-08-2 (green) and 2022-08-06 (red) overlap between log steps 0 and 125.}
\label{img:multi-sigma}
\end{figure}

Figure \ref{img:sigma-curve-compare} shows the result for these six experiments, focusing on the entropy of the difference of pose angles for brevity and clarity. A number of patterns can be discerned. Firstly, these experiments that ran for the full 20 epochs appear to perform better than experiments with fewer epochs. Of these, only 2022-08-01-2 and 2022-08-08 show no signs of late training erratic entropy changes (though 2022-08-08 does show some increasing entropy during the last few steps). The sharper initial gradient of 2022-08-08-4 (black) appears to have hampered progress when compared to either 2022-08-06 or 2022-08-08-2. 2022-08-08-4 also appears to be the most erratic of the six runs, suggesting that either the steeper or more erratic gradient results in poorer rotation learning. Arguably, the best performer is 2022-08-01-2 though this run does not show any appreciable improvement until the latter third of training. 

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/grad_entropy.png}
\caption{The rotation difference entropies against logging interval for the 6 experiments shown in figure \ref{img:multi-sigma}.}
\label{img:sigma-curve-compare}
\end{figure}

Figure \ref{img:sigma-curve-compare} suggests that a lower bound of 4.0 is acceptable for good predictions. Such a sigma results in a 9 pixel spot (at FWHM) for each point in the structure.
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\subsection{Output-sigma prediction}
HOLLy can attempt to set the output-sigma, matching the input-sigma as close as possible. A single parameter is predicted by the network and passed through function \ref{eq:sigma_out}. The \emph{softplus} function is defined by equation \ref{eq:softplus}.

\begin{equation}
\label{eq:sigma_out}
\text{outputsigma}(x) = \text{clamp}(\text{softplus}(x,\text{threshold=12}), \text{max=14})
\end{equation}

\begin{equation} \label{eq:softplus}
 \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
\end{equation}

Output-sigma prediction has a number of advantages - mentioned in Chapter \ref{chapter:holly} - accounting for differences in the number of localisations and reducing the effects of noise.

Figure \ref{img:12_11_sigma} shows the input-sigma and the mean of the predicted output-sigma values across the training set. In this experiment (2021-12-13), the Stanford Bunny structure is predicted as is the pose . The correlation between the two scores is significant (Pearsons 0.97998, p-value $\num{4.82e-295}$. Kendall Tau 0.93, p-value $\num{2.13e-217}$).
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\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/2021_12_13_sigma.png}
\caption{An example of output-sigma prediction (experiment 2021-12-13  - \ref{appendix:experiments}). The input-sigma (in blue) and the predicted output-sigma (in red), plotted against the number of training steps. Each datum in the predicted curve is the mean of the entire test-set (200 items).}
\label{img:12_11_sigma}
\end{figure}
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Figure \ref{img:dora_4_sigma} shows the predicted sigma curve for one of the experiments performed on the expansion microscopy data of glutamylated tubulin, described in Chapter \ref{chapter:holly}. In this experiment, the underlying \gls{PSF} (and therefore the input sigma) of the data is not known, but an additional Gaussian blur is applied at the beginning of the experiment to aid network convergence. This can be seen in the blue curve. The red curve shows the predicted sigma, which begins to reduce as the input sigma reduces. This reduction slows once the Gausssian blur stops being a applied (Pearsons 0.649, p-value $\num{2.87e-25}$. Kendall Tau 0.65, p-value $\num{4.74e-34}$). 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2021_08_15_dora_4_sigma.png}
\caption{The input-sigma (in blue) and the predicted output-sigma (in red), plotted against the number of training steps for experiment 2021-08-15-dora-4. Each datum in the predicted curve is the mean of the entire test-set (600 items).}
\label{img:dora_4_sigma}
\end{figure}

These curves shown in figures \ref{img:12_11_sigma} and \ref{img:dora_4_sigma} are fairly typical for the sigma predictions made by HOLLy when solving either an experimental or simulated structure.

HOLLy appears to have the ability to match more complicated sigma curves. Figure \ref{img:2021_11_23_2_sigma} shows a more erratic and non-continuous input-sigma. HOLLy appears to match it quite closely, despite the variation.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/2021_11_23_2_sigma.png}
\caption{The input-sigma (in blue) and the predicted output-sigma (in red), plotted against the number of training steps, showing HOLLy's ability to match more complicated sigma schedules. Each datum in the predicted curve is the mean of the entire test-set (500 items).}
\label{img:2021_11_23_2_sigma}
\end{figure}
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\section{Normalisation.}

The word normalisation has several meanings within a system like HOLLy. Batch normalisation is applied at each layer of the network, the input structures are normalised to fit within a particular volume, the Gaussians used in the rendering must sum to a particular value and the input images require scaling. This section focuses on the normalisation of the input images.

In order to avoid large gradients the input images should be scaled to an appropriate value. Through trial and error during the initial design of HOLLy, we noticed that a total intensity of 1.0 for each Gaussian rendered to the final image gave good results with simulated data. Such images would have an integrated intensity matching the number of points being optimised (typically 200 to 400).

Experimental data varies considerably in its intensity. For example in the CEP-152 case, the number of localisations varies considerably across the dataset (a minimum of 5341 localisations and a maximum of 30758. A mean of 9105 with a standard deviation of 477.64). Even if every datum contained the same minimum number of localisations, we were limited to using around 1000 points due to hardware and time constraints. We would have fallen short of the target intensity by a factor of 5.

Several options for normalisation were available. The first option investigated involved dividing a batch by the total intensity, then multiplying by a fixed scalar. While this was acceptable for these batches with similar integrated intensities (and relatively easy to implement), batches containing data with significantly different intensities proved not to converge well. This was particularly apparent with the tubulin data, obtained by expansion microscopy (see Chapter \ref{chapter:holly}). We switched to normalising each image individually, which improved performance.
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\section{Loss functions.}
The loss function used throughout the HOLLy experiment was the $L1$ loss between the input and output images. Rather than use the \lq mean\rq\ reduction, we used both the \lq sum\rq\ and \lq mean\rq\ reductions. It has been shown that the $L1$ loss performs better with certain image-based tasks than $L2$ \citep{zhaoLossFunctionsNeural2015}. We experimented with the $L2$ loss (the sum-squared difference between input and predicted pixels), but found the resulting losses to be much too small to move the network in any particular direction, likely due to the normalisation scheme used.

During development, we experimented with a masked loss function. This was briefly remarked upon in Chapter \ref{chapter:holly}, but merits some expansion here. We created a mask from the target image, removing the background using a threshold. The loss is calculated only for these pixels that are within the mask. This introduces a new hyper-parameter - the background threshold. The mask (M) is a tensor with the same dimensions as the output-image (O), either a 0.0 or 1.0 value, and is generated from the target image (T) (Equation \ref{eq_lossfunc}).

\begin{equation} \label{eq_lossfunc}
\text{Loss}(T,O,M) = \sum_{x,y}^{w,h}|T_{x,y} M_{x,y} - O_{x,y} M_{x,y}|
\end{equation}

We noticed this particular loss function did not seem to improve the results. Instead, points that were moved outside of the mask were unlikely to be moved again, while the resulting structure did not seem any more accurate.

While the L1 loss on pixel values is simple to implement and requires no additional hyper-parameters, it can be misleading when the input-sigma values are low, overly penalising results where the alignment is almost perfect. This is discussed in the next section.
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\section{Learning}
\label{sec:learnrot}
The neural-network component of HOLLy optimises up to six parameters, organised into 3 groups: the rotation, the translation and the output-sigma. Convolutional neural networks are designed to be \emph{shift-equivariant} - an important feature can be translated anywhere within the image and still be detected\citep{estevesLearningEquivariantRepresentations2018}\citep{mcgreivyConvolutionalLayersAre2022}. In order to cope with features that are rotated within the image, one approach is to \emph{augment} the data by arbitrarily rotating each input datum\citep{aggarwalNeuralNetworksDeep2018}\citep{estevesLearningEquivariantRepresentations2018}. 

Early experiments with translation alone were solved with a much smaller model in a short space of time. Later experiments with predicting output-sigma show good correlation with the input-sigma. It is possible to directly measure translation accuracy, using a \lq centre-of-mass\rq\ calculation for both the input and output models, then computing the distance between the two centres. 

Predicting continuous rotation parameters - SO(3) - is arguably the most difficult of the three groups mentioned. Measuring the accuracy of HOLLy's rotation predictions requires a sophisticated solution.

\subsection{Rotation}
\label{sec:learn_rotation}

To measure the difference between input and output rotations we must overcome two problems. Firstly, rotations are continuous and periodic. Secondly, our input structure's frame-of-reference is aligned to the cardinal axes, whereas the network's derived structure can have any frame-of-reference, making direct comparison of the rotation parameters meaningless.

To solve these problems, we firstly need a way to measure the difference between two rotations in the \gls{SO(3)} rotation group. We converted our angle-axis parameters to unit quaternions (Equation \ref{eq:vec_to_quat}), then finding the \lq Norm of the difference of Quaternions\rq\citep{huynhMetrics3DRotations2009} (Equation \ref{eq:norm_quat}).

\begin{equation}
\begin{aligned}
Q_x = A_x * sin(angle / 2) \\
Q_y = A_y * sin(angle / 2) \\
Q_z = A_z * sin(angle / 2) \\
Q_w = cos (angle / 2)\\
\end{aligned}
\label{eq:vec_to_quat}
\end{equation}

\begin{equation}
\Psi_2(q_1,q_2) = min\{\|q_1 - q_2\|, \|q_1 + q_2\|\}
\label{eq:norm_quat}
\end{equation}

The range of equation \ref{eq:norm_quat} is $[0, \sqrt{2}]$.

To solve the second problem, there are two approaches available. Firstly, we can optimise just the network part of HOLLy, leaving the points vector unchanging and set to the input model. The difference between the input and predicted rotation poses should therefore reduce to zero as training progresses. We separated the values from equation \ref{eq:norm_quat} into a 100 bin histogram, generated multiple histograms as training continued, resulting in a heat-map showing the distribution of the pose differences over training. Figure \ref{img:entropy_11_18_2} shows the distribution of pose differences narrowing over time, converging on a distance of 0.
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/entropy_11_18_2.png}
\caption{A heatmap showing the difference between the input and predicted rotations, categorised into 100 bins. The test set is 200 items in size. Brighter bins contain more examples. Training progresses from the top of the heatmap downwards. The top of the heatmap shows the first training step where the distribution is widest. Further down the heatmap, the distribution narrows and approaches 0. When HOLLy is set to predict only pose, the frame of reference matches the input, therefore the rotation angle difference should converge on zero.}
\label{img:entropy_11_18_2}
\end{figure}
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The previous heatmap converges towards 0 as we are only predicting the pose. If we predict both pose and structure, a network that accurately predicts pose will also show convergence in such a heatmap, but the value converged upon need not be zero. This value is directly related to the difference between the input and output structure's reference frame. Conversely, a network that has failed to learn rotation would fail to converge. 

The convergence can be represented more succinctly by computing the Shannon Entropy across the distribution of differences between the input and output rotations. Each line, or step in the heatmap is a histogram. The Shannon Entropy (Equation \ref{eq:entropy}) for each histogram can be computed, providing an accuracy score. This is computed at each logging step as training progresses, providing a useful metric for how well HOLLy learns rotation (we will use this approach throughout the remainder of this thesis to assess rotation prediction accuracy).

\begin{equation}[H]
H(X) = - \sum_{i=1}^nP(x_i)\log P(x_i)
\label{eq:entropy}
\end{equation}
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\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/entropy_time_11_18_2.png}
\caption{A graph of the entropy score across the pose differences from the test set against the training step. The Shannon entropy is calculated using the same data presented in figure \ref{img:entropy_11_18_2}. The entropy decreases significantly over time (a drop of 0.4) but at various times, particularly towards the end of training, the entropy increases drastically.}
\label{img:entropy_time_11_18_2}
\end{figure}
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Figure \ref{img:entropy_11_7} shows the difference between the input and predicted poses for the test set at steps throughout the training. The distribution of differences narrows as training progresses.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/entropy_11_17_3.png}
\caption{A heatmap showing the difference between the input and predicted rotations, categorised into 100 bins. When structure and pose are predicted, the heatmap shows the angle difference converging on a value that is non-zero - a value representing the difference between the network's determined frame of reference and the original frame of reference. The test set is 200 items in size. Training progresses from the top of the heatmap downwards.}
\label{img:entropy_11_7}
\end{figure}
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\subsection{Translation}
\label{sec:translation}

Translation in HOLLy is represented by two parameters representing the movement in the X and Y dimensions. As previously mentioned, changes in the Z axis are not detectable in the image due to the lack of perspective (or any other depth cues) and is therefore not modelled in early versions (later versions will attempt to model translation in Z).

Before the outputs of the translation neurons are sent to the differentiable renderer, they are passed through a final function that limits the translation to a particular range, set by the user. This was to prevent the network from generating results that would translate the entire structure out of view. \citet{insafutdinovUnsupervisedLearningShape2018} use a \emph{tanh} function to restrict the \lq output coordinates\rq. We use the same function to restrict the translation to an appropriate range (equation \ref{eq_tanhtrans}).

\begin{equation} \label{eq_tanhtrans}
T_{x,y} = \text{tanh}(P_{x,y} * 2.0) * M_{x,y}
\end{equation}
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/tanh_activation.png}
\caption{A plot of equation \ref{eq_tanhtrans} with $M_{x,y}$ set to 0.5. The final output is restricted to $\pm M_{x,y}$ regardless of the input from the neuron.}
\label{img:tanh_trans}
\end{figure}

Care must be taken to match the input data with the choice of $M_x$ and the learning-rate. Input data-sets with large variations across a large translation range can push the network into an area of the $tanh$ curve with very small gradients. This manifests in the translation becoming \emph{stuck} in a particular corner of the view-field.
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Another approach was taken to model translation in later versions of the network (see Chapter \ref{chapter:worms}). Rather than use a \emph{tanh} function to bound the translation, the \emph{soft-sign}\footnote{https://pytorch.org/docs/stable/generated/torch.nn.Softsign.html} function was used (equation \ref{eq_softsign}). The gradient is smoother and seems to remove the \emph{sticking} problem. Figure \ref{img:softsign} shows this new activation function.

\begin{equation} \label{eq_softsign}
    \begin{split}
    \text{SoftSign}(x) = \frac{x}{ 1 + |x|} \\
    T_{x,y} = \text{SoftSign}(P_{x,y}) * M_{x,y}
    \end{split}
\end{equation}

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/softsign.png}
\caption{A plot of equation \ref{eq_softsign} with $M_{x,y}$ set to 0.5. The final output can exceed $\pm M_{x,y}$ but the gradient is not as steep as \emph{tanh} over the the input range  -0.5 to 0.5, and not as shallow over the remaining range. While translation can exceed the viewport, it rarely does in practice.}
\label{img:softsign}
\end{figure}
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Detecting the translation parameters alone is particularly quick, with simple early tests showing accurate translation detecting before the first epoch has completed, even with high levels of input-sigma blur. This suggests a separate network, sensitive only to translation could be trained in a shorter time (with a potentially different learning rate).

A separate network for translation might be essential. Certain experiments throughout this study would exhibit poor performance when previously the same code had given good results. The factor appeared to be the amount of translation within the input data. Experiments 2022-08-25-5, 2022-08-25-6, 2022-08-25-7 and 2022-08-25-8 increase the amount of input translation and the variable $M_{x,y}$ in order to compensate. Table \ref{table:transtests} describes the changing parameters for each experiment. For context, an $M_{x,y}$ value of 0.5 would allow the Stanford Bunny model to touch the borders of the image.

\begin{table}[H]
\centering
\begin{tabular}[t]{|c|c|c|}
\hline
Experiment & $M_x$ & Epochs \\
\hline
2022-08-25-5 & 0.1 & 20 \\
2022-08-25-6 & 0.2 & 20 \\
2022-08-25-7 & 0.2 & 30 \\
2022-08-25-8 & 0.3 & 40 \\
\hline
\end{tabular}
\caption{The variables for the translation experiments.}
\label{table:transtests}
\end{table}

The first experiment - 2022-08-25-5 - is the baseline and performs well, with good structure, rotation and translation prediction, although performance appears to decrease towards the end of the training. Figures \ref{fig:2022_08_25_5-left} and \ref{fig:2022_08_25_5-right} shows both the entropy of the rotation differences and the mean of the differences between the input and predicted translations (at each training step, the entire test set is evaluated and the mean taken).
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\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_5_entropy.png}
\caption{A plot of the entropy of the rotation differences against the training step. Entropy decreases for the first two-thirds of training but appears to increase at the end of training. }
\label{fig:2022_08_25_5-left}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_5_trans.png}
\caption{The mean of the test dataset translation differences plotted against the training step. Translation is quickly improved early in training, plateus for the majority of training time, and is refined towards the end of training.}
\label{fig:2022_08_25_5-right}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_6_entropy.png}
\caption{A plot of the entropy of the rotation differences against the training step when the translation amount has been increased to 0.2. The entropy is still decreasing at the point training stops.}
\label{fig:2022_08_25_6-left}
\end{figure}

Increasing $M_{x,y}$ to 0.2 impacts performance considerably. 2022-08-25-6 results in a partial construction - a bunny with two heads and poor pose detection. However, the plots in Figure \ref{fig:2022_08_25_6-left} suggest the network was still improving. 

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_6_trans.png}
\caption{The mean of the test dataset translation differences plotted against training step. A very early reduction in the translation difference is followed by a very slow reduction.}
\label{fig:2022_08_25_6-right}
\end{figure}

Increasing the training time to 30 epochs, while fixing all other parameters improves the performance. 2022-08-25-7 improves on 2022-08-25-6 with much improved structure and pose detection (Figures \ref{fig:2022_08_25_7-left} \& \ref{fig:2022_08_25_7-right}).

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_7_entropy.png}
\caption{A plot of the entropy of the rotation differences against training steps. Increasing the training time has decreased the rotation difference entropy.}
\label{fig:2022_08_25_7-left}
\end{figure}


\begin{figure}
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_7_trans.png}
\caption{The mean of the test dataset translation differences plotted against training step. Increasing the training time has improved the translation prediction accuracy.}
\label{fig:2022_08_25_7-right}
\end{figure}

Unfortunately, this trend does not appear to continue, as experiment 2022-08-25-8 shows. Figures \ref{fig:2022_08_25_8-left} \& \ref{fig:2022_08_25_8-right} show that increasing $M_{x,y}$ to 0.3 and increasing the training time to 40 epochs results in poor structure and consequently, poor pose prediction. Howver, the same trend can be seen - both rotation and translation were still improving when training ended, though the rate of convergence appears to be slower.

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_8_entropy.png}
\caption{A plot of the entropy of the rotation differences against training step.}
\label{fig:2022_08_25_8-left}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_25_8_trans.png}
\caption{The mean of the test dataset translation differences plotted against training step.}
\label{fig:2022_08_25_8-right}
\end{figure}

Could the poor structure be causing the poor rotation prediction? Recall that structure is directly optimised - it does not interact with the CNN. Moving all the points in the same direction through direct optimisation is equivalent to translating the model in the same direction using parameters derived by the CNN; translation prediction and reconstruction could be in conflict. To test this hypothesis, experiment 2022-08-26 predicts translation and rotation, but not structure. After 40 epochs, the translation and rotation are well predicted, despite $M_{x,y}$ remaining at 0.3.

\begin{figure}[H]

\centering
\includegraphics[width = \textwidth]{images/2022_08_26_entropy.png}
\caption{A plot of the entropy of the rotation differences against training steps. When structure is not predicted, the entropy reduces considerable, despite $M_{x,y}$ remaining at 0.3.}
\label{fig:2022_08_26-left}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_26_trans.png}
\caption{The mean of the test dataset translation differences plotted against training step. The difference between the predicted and actual translations reduces over training time, despite $M_{x,y}$ remaining at 0.3.}
\label{fig:2022_08_26-right}
\end{figure}

Convolutional neural networks are \emph{shift equivariant} - convolutional layers do not operate differently depending on the pixel position of the receptive field. The weights are shared by the feature maps as the receptive field is convolved across the input \citep{estevesLearningEquivariantRepresentations2018}. This feature is very desirable when building a classifier - for example a neural network attempting to detect a particular object in a scene. It is not important where the object appears in the image, so long as it is identified. This would suggest that learning translation would be difficult for a neural network if it cannot discern where its receptive field was at the point of detection. Our experiments show that translation over a continuous domain is well predicted, and predicted quickly with only small refinements later in training.

In almost all experiments where variation in translation is large, the translation is well detected but the structure - and therefore the rotation also - are predicted poorly. This is investigated further in section \ref{sec:lrp}. 
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\subsection{Loss curves.}
\label{sec:losscurves}
When assessing a neural network, the loss is plotted against training time for both the training and test sets. Such plots typically show a decreasing loss on both sets, with the test loss being larger than the training loss. The loss produced by successful HOLLy experiments does not reflect this trend; the loss will drop significantly then slowly increase as training progresses. This is largely due to the ever-decreasing input-sigma, which increases the average range of the loss. Recall that reducing the input-sigma results in sharper gradients and higher peaks in the rendered points, resulting in a greater loss between two points that are not exactly aligned. Figure \ref{img:quatdist_vs_loss} shows this effect.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/quatdist_vs_loss.png}
\caption{A graph of loss against the quaternion distance between the input and output angles, for different values of input sigma. 20 images of the Utah Teapot are rendered, each with different rotational poses. Each image is compared to every other image and a loss is calculated. The losses are plotted against the computed quaternion distance between the two poses. This is done for 10 different sigma values (colour coded). A best-fit line has been added to each sigma value. The distance between the poses has a minimal effect on the loss, unlike the choice of sigma. While there is a small correlation between loss and quaternion distance, the sigma value affects the loss much more greatly.}
\label{img:quatdist_vs_loss}
\end{figure}
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\subsection{Induced Rotation}
\label{sec:inducedrotation}
In several tests and experiments on HOLLy, the loss curves would show a peculiar pattern. At a certain point in training the test loss would diverge from the training loss - the variance would increase considerable over a small number of training steps. Figure \ref{img:loss_diverge} shows this divergence, in experiment 2021-11-15 (Appendix \ref{appendix:experiments}). However, these experiments would return accurate reconstructions of the underlying 3D structure. This is counter-intuitive; a good final structure should only be obtainable with a well trained network that can predict accurate poses.

\begin{figure}[h]
\centering
\includegraphics[width=12cm]{images/loss_diverge.png}
\caption{A graph of the training loss (in blue) and test loss (in red) against training steps. The training loss is averaged over a \gls{mini-batch}. The test loss is averaged over the entire test set (usually a factor of 10 larger than the mini-batch size). During the early part of the training, both losses are very similar. During the second third of training, the test loss begins to fluctuate but remains close to the training loss. By the final third of training the test loss varies wildly.}
\label{img:loss_diverge}
\end{figure}
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At regular intervals through training, the points were recorded and an animated created, showing the points being moved towards their final position. It became clear that an optimal structure would appear \emph{before} the end of training. Once the structure had been derived, the points would move in unison - in effect \emph{inducing a rotation} of the entire structure. This is clearly visible in figure \ref{img:points_rotate}.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/points_rotate.png}
\caption{Three images of the the 3D model through training. In this particular experiment, the model begins to show recognisable features around 30\% through training. After 50\% of the training steps, the structure is well formed. The last image shows the points moving in unison around the origin, effectively rotating. While individual points continue to have diverse, local movement, the morphology of the structure does not change - only its rotational pose.}
\label{img:points_rotate}
\end{figure}

In Chapter \ref{chapter:holly} we proposed a method to measure the accuracy of the reconstructed model - the Iterative Closest Point (ICP) algorithm, combined with a nearest neighbour distance (root-mean-squared or mean-absolute distance). This method can also be used to detect whether or not an acceptable model has been obtained before training ends. The images in Figure \ref{img:points_rotate} were taken several epochs apart; the macro-level movement that appears as a rotation can only be detected over a long training period. At each step in training, the points do not appear to move at all. We therefore require a window of an indeterminate size to observe this effect.

A typical experiment will generate 520 snapshots of the model. Figure \ref{img:icp_test} shows the mean distance between the points of two snapshots, a fixed window apart in training time. This window is set to 10 snapshots, equating to 1000 steps in this particular experiment. The score is calculated by finding the distance between nearest neighbours once ICP has been applied to align the models. Recall that this score is not definitive, as model alignment is an NP-hard problem; ICP approximates the optimal solution. After a certain point the distances stop reducing. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/icp_test.png}
\caption{An example of a training run with 520 snapshots of the model. Each model is compared to the snapshot taken 10 intervals previously. The mean distance is computed by finding the nearest unique neighbour from the later snapshot that is not already assigned to another point from the first snapshot. For the first half of the training, the mean distance reduces quickly. The second half of the training shows a relatively flat curve, implying that the structure has not changed significantly from this time in the training. This supports the observations in Figure \ref{img:points_rotate}}.
\label{img:icp_test}
\end{figure}

In order to improve performance we can employ a \emph{variable learning rate}. Using an appropriate scheduler\footnote{Pytorch has several such schedulers. We used the \emph{ReduceLROnPlateau} scheduler -\url{https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html\#torch.optim.lr_scheduler.ReduceLROnPlateau}} the learning can be reduced when a particular scalar value fails to improve over a number of training steps - in this case, the distances between two snapshots of the structure. Experiment 2021-12-18-2 uses this scheduler with the Stanford Bunny model. Figure \ref{img:2021_12_18_2_loss} shows the the training and test losses with the scheduler applied - the large fluctuations of the test set have been removed.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2021_12_18_2_loss.png}
\caption{The training loss (blue) and test loss (red) plotted against the training step for experiment 2021-12-18-2.}
\label{img:2021_12_18_2_loss}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2021_12_18_2_lr.png}
\caption{The learning rate plotted against the training step for experiment 2021-12-18-2.}
\label{img:2021_12_18_2_lr}
\end{figure}
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\subsection{Mirroring}
\label{sec:mirroring}
The entropy calculation is a reasonable measure for how well the network has learned rotation, however there is one particular case where the entropy scores cannot solely be relied upon - a mirrored result.

Recall from Chapter \ref{chapter:holly}, it is not possible to discern from the data alone, whether or not a particular object is \emph{left-handed} or \emph{right-handed} when relying on 2D renderings with no depth or perspective effects. In other-words, in the the Stanford Bunny experiments, the bunny could be looking over either its left or right shoulder - the rendered images would be identical. 

This effect can be more clearly seen in the entropy graph from experiment 2022-08-09-3. Figures \ref{img:2022_08_09_3_entropy} and \ref{img:2022_08_09_3_structure} show a deterioration of the pose detection and the corresponding structure at the point of training where this deterioration occurs. At approximately 13.5 epochs into training, the structure is in both the correct and mirrored form. A decision is made to continue with one of these structures - in this case the mirrored one was chosen, which appears to have had a negative affect on the rotation modelling.

\clearpage

\begin{figure}[h]
\centering
\includegraphics[width=14cm]{images/2022_08_09_3_entropy.png}
\caption{An example of the Shannon Entropy of the rotation differences between predicted and original rotations, when a mirrored structure is converged upon. Note the \emph{uptick} in entropy towards the end of training. This was observed on multiple occasions. It coincides with a decision point in the structure, shown in figure \ref{img:2022_08_09_3_structure}}
\label{img:2022_08_09_3_entropy}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=14cm]{images/2022_08_09_3_structure.png}
\caption{The derived structure 13.5 epochs into training 2022-08-09-3. The Stanford Bunny is being viewed from the front, facing the head. At this point during training, the body is formed but the head and ears are in both the correct and mirrored positions at once. After this point, a decision was made to select one of these two positions, affecting the subsequent pose detection.}
\label{img:2022_08_09_3_structure}
\end{figure}

It is unclear why symmetrical structures frequently occur. In particular, the Stanford Bunny experiment often follows the same trend - symmetry along the X-Y plane, resulting in a \emph{two-headed} structure. We suspect the reason for this repeatable behaviour are the different levels of detail in the underlying structure and the input sigma curves. The largest, macro-scale detail is the first to be seen - the body as separate from the head. The details that separate the ears and decide the facing are only visible when the input sigma is low.
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\subsection{Layer-wise Relevance Propagation}
\label{sec:lrp}
Deep-learning and Neural networks have been criticised for being \say{black boxes}\citep{lapuschkinUnmaskingCleverHans2019}. Understanding why a neural network has made a particular decision given a particular input is often difficult to explain. Recently, several methods have been proposed including \emph{Interpretable Loocal Surrogates}, \emph{Occlusion Analysis}, \emph{Integrated Gradients} and \emph{Layerwise Relevance Propagation}(LRP). \citep{samekExplainingDeepNeural2021}. This movement towards providing explanations for AI methods is often referred to as \emph{Explainable AI}(\gls{XAI}). 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/lrp_overview.png}
\caption{Illustration of the LRP algorithm. After a prediction is made, it is \emph{propagated backwards} through the network using various rules corresponding to layer type and depth. The red lines show the prediction flowing backwards through the layers. The resulting output assigns a value to each of the original input pixels describing its relevance. Example propagation rules are shown at the bottom. This image is taken from \citet{samekExplainingDeepNeural2021}.}
\label{img:lrp_overview}
\end{figure}

The LRP algorithm aims to visually highlight which pixels within the input image were the most important for the ultimate decision made by the network \citep{montavonLayerWiseRelevancePropagation2019}. It does so by propagating the result backwards through the trained network, using a particular rule for each type of layer. Figure \ref{img:lrp_overview} illustrates the procedure; the prediction value is \emph{propagated backwards} (though similar, not to be confused with the aforementioned \emph{back propagation}) until the first layer is reached. 

\citet{kohlbrennerBestPracticeExplaining2020} state that \say{A recent trend among XAI researchers and practitioners employing LRP is the use of a composite strategy for decomposing the prediction of a neural network}. Different layers of a DNN are decomposed with different rules. Such rules ameliorate the problems of \emph{gradient shattering}(see Chapter \ref{chapter:introduction}). Figure \ref{img:lrp_overview} lists 4 rule: \emph{LRP-0}, \emph{LRP-$\epsilon$}, \emph{LRP-$\gamma$} and \emph{Box}. 

A particular rule is applied at each layer, calculating that layer's contribution based upon its type and position in the model. The resulting image has the same dimensions as the input but each pixel is now a magnitude representing the relevance of each pixel to the prediction. The \emph{relevance} that passes backwards through the network follows a \emph{conservation} principle - all relevance that flows into a neuron at a given layer flows out of it. Figure \ref{img:lrp_redist} illustrates this property. Many rules have been proposed for the various kinds of layers that might be found in particular model \citep{samekExplainingDeepNeural2021}.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/lrp_redist.png}
\caption{Illustration of the redistribution of \emph{relevance} from one neuron to the next below. Each neuron redistributes as much relevance as it has received. This image is taken from \citet{montavonLayerWiseRelevancePropagation2019}}.
\label{img:lrp_redist}
\end{figure}

We applied LRP to HOLLy using two approaches: the first was to manually design a set of LRP rules based on the original work by \citet{montavonLayerWiseRelevancePropagation2019} and the second was to use software \emph{Zennit}\footnote{\url{https://github.com/chr5tphr/zennit}}\citep{andersSoftwareDatasetwideXAI2021}. We focus on the latter, as it is more mature, tested and verified. The challenge in using LRP involves choosing the correct rules. According to \citet{kohlbrennerBestPracticeExplaining2020}, a typical combination involves three or four rules referred to as : $LRP_z$ (or $LRP-0$), $LRP_\epsilon$, $LRP_{\alpha\beta}$ and $LRP_\flat$ (we note that figure \ref{img:lrp_overview} has a rule called $LRP_\gamma$).

The first rule -  $LRP_z$ - is the original rule, derived from \emph{Deep Taylor Decomposition}\citep{montavonExplainingNonlinearClassification2017} and is described in equation \ref{eq:lrpz}. This rule takes the relevance score of the upper layer ($(l+1)$) wrt. the forward mappings $z_{ij}$ and their aggregations $z_j$. This equation is conservative - any relevance flowing into the layer will flow out. In their original LRP paper \citet{montavonLayerWiseRelevancePropagation2019} point out that \say{one needs to design more robust propagation rules} as \say{the gradient of a deep neural network is typically noisy}. This rule can be used for the fully connected layers close to the output of the model.

\begin{equation}
R_i^{(l)}=\sum_j{{z_{ij} \over z_{j}} R^{(l+1)}}
\label{eq:lrpz}
\end{equation}

The second rule, $LRP_\epsilon$ makes a minor adjustment to $LRP_z$, adding a small constant $\epsilon$ to the denominator in order to avoid divide-by-zero errors and to prevent too much relevance occurring from a neuron activation that is very weak or contradictory. This has the effect of reducing noise in the final output.

$LRP_{\alpha\beta}$ is somewhat more complicated and described by equation \ref{eq:lrpab}. Essentially, the positive and negative contributions of the prediction are separated, weighted by $\alpha$ and $\beta$ respectively. Typically, this rule is used in the earlier layers closer to the input.

\begin{equation}
R_j = \sum _k \Big (\alpha \frac{(a_j w_{jk})^+}{\sum _{0,j} (a_j w_{jk})^+} - \beta \frac{(a_j w_{jk})^-}{\sum _{0,j} (a_j w_{jk})^-}\Big ) R_k
\label{eq:lrpab}
\end{equation}

Finally, $LRP_\flat$ - described in equation \ref{eq:lrpflat} - distributes all relevance equally across the neurons and is only used at the earliest layer, resulting in the final relevance image.
\begin{equation}
R_j = \sum _k \frac{1}{\sum _{j} 1} R_k
\label{eq:lrpflat}
\end{equation}

Recall that HOLLy is built around convolutional layers, batch normalisation, leaky-ReLU activations and fully connected layers, making it a somewhat typical CNN. We began by following the suggestion by \citet{kohlbrennerBestPracticeExplaining2020} and use $LRP_\flat, LRP_{\alpha,\beta}, LRP_\epsilon$ rules, using the function \emph{EpsilonAlpha2Beta1Flat} from \emph{Zennit}. As we use batch-normalisation, the \emph{Zennit} guidelines suggest the use of a \emph{canonizer}; \citet{andersSoftwareDatasetwideXAI2021} state that models that use certain functions will need to be \emph{canonized} before they can be analysed. With these rules in place, we applied LRP to experiment 2022-08-25-7, analysing the translation and rotation separately.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_25_7_lrp_rot.jpg}
\caption{6 images taken from an animation of the LRP algorithm applied to experiment 2022-08-25-7. Each image is a triptych: from left to right, the input to the network, the predicted output and the LRP heatmap. Blue marks negative contribution and red marks positive. The rotation is the only variable to be changed in the input.}
\label{img:2022_08_25_7_lrp_rot}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_25_7_lrp_trans.jpg}
\caption{6 images taken from an animation of the LRP algorithm applied to experiment 2022-08-25-7. Each image is a triptych: from left to right, the input to the network, the predicted output and the LRP heatmap. Blue marks negative contribution and red marks positive. The translation is the only variable to be changed in the input.}
\label{img:2022_08_25_7_lrp_trans}
\end{figure}

Figure \ref{img:2022_08_25_7_lrp_rot} shows the generated LRP heatmaps for particular rotations and the prediction made by HOLLy. Areas with higher intensity tend to be the most responsible for the prediction though almost all the images show contribution of the silhouette, with contributions around the outline of the object. Curiously, the last triplet shows considerable contributions from the borders of the image; the rotation prediction is also incorrect.

Figure \ref{img:2022_08_25_7_lrp_trans} shows the generated LRP heatmaps for particular translations. The fourth and sixth triples shows an incorrect translation and rotation as the input model was moved further than $M_{x,y}$. In all other cases the translation is well predicted. The heatmaps seem similar to these for rotation, with areas of high intensity and around the fringe being most relevant.

The border of the Stanford Bunny being highlighted with LRP will take on more significance in the \emph{labelling challenge} discussed in Chapter \ref{chapter:worms}.

\subsection{Over-training}

\emph{Over-training} is a term used to describe a particular undesirable effect in a machine learning system; rather than generalise, the network merely \emph{remembers} what it has seen. This can be detected by computing the loss on a data-set separate from the training set, referred to as the \emph{test-set}. This data-set is not used for training the network, but to determine how well the network has generalised to examples it has not seen. Both the training and test losses should decrease as the network improves. If the test loss begins to increase while the training loss continues to decrease, we have found the point where the network has begun to over-train.

This technique is slightly more difficult to apply to HOLLy directly. Recall that the loss is dependent on 3 major factors - the pose, the input and output sigmas and the model. The neural network itself is responsible for the pose and output-sigma only (and in certain cases, just the pose). Even if the output-sigma is not predicted, reducing the input and output sigmas increases the loss.

Indeed, in the context in which HOLLy is applied, over-training can be desirable as perfect performance on the training set coupled with poor performance on the test set will result in an accurate structure prediction. 

\section{Learning rates and optimisers.}
\label{sec:learning_rates}
Normalisation brings the input data to within a particular range and scale. The next stage is to pick an optimiser and learning rate appropriate to this range. The normalisation has a direct effect on the loss, which has a direct effect on the gradients. The gradients are back-propagated through the network, altering the weights and improving the network's ability to accurately represent the pose. Recall that we are solving two different problems in two different domains - the structure and the pose; the pose requires the weights of the network to be changed by small amounts - the points forming the structure move over different ranges and have the loss applied directly to their positions. The choice of optimiser and accompanying learning rate needs careful consideration.

The optimiser traverses the \emph{solution landscape} by following the gradients using a particular algorithm, combined with the learning rate. The new values the optimiser derives are applied to the weights in the network, but directly to the point positions.  Large differences in the loss will result in large movements of the points, affecting how well the rotation is predicted, in turn, affecting the quality of the structure.

The majority of our experiments took advantage of the Adam optimiser \citep{Kingma2014AdamAM} which is \emph{scale-invariant} with respect to the gradients. Compared to some other optimisers such as Stochastic Gradient Descent (SGD)\footnote{Specifically, the PyTorch implementation \url{https://pytorch.org/docs/stable/generated/torch.optim.SGD.html?highlight=sgd\#torch.optim.SGD}}, Adam effectively ignores the different scales of loss that different normalisation strategies might produce. The only choice the user is required to make is the learning rate. Early experiments with SGD resulted in poorer structures and poorer rotation accuracy than with Adam.

The default learning rate provided with the PyTorch implementation of Adam is 0.001\footnote{See the PyTorch manual - \url{https://pytorch.org/docs/stable/generated/torch.optim.Adam.html\#adam}}. This provides a starting point for our investigations. We found this rate too high - the structure appeared to move too fast, producing a poor structure and poor pose prediction. After a number of trials, the learning rate of 0.0004 produced acceptable results.
It seems naive to assume that the same learning rate would be acceptable to both problems - pose and structure. Nevertheless, for the majority of the experiments performed, the learning rate was kept the same for both. 

However, HOLLy does support separate learning rates for both problems. Later experiments, after the addition of the 6P rotation representation (see later section \ref{sec:reprot}) benefited from an increase in the points learning rate.

Section \ref{sec:learnrot} mentioned that HOLLy can be run to detect the pose of a known structure only. With this feature enabled, the learning rate can be increased by a factor of 10 whilst still obtaining a good result. Figure \ref{img:11_25_3_entropies} shows the entropy curves for experiment 2021-11-25-3, using the larger learning rate.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/11_25_3_entropies.png}
\caption{A plot of the training and test set entropies. At fixed intervals throughout training, the distances between the input and output angles are obtained and categorised. From these histograms, the Shannon entropy can be calculated. This entropy is then plotted against the training time and is expected to reduce as the network converges on a solution. The curves follow a familiar pattern - the test curve approaches the training curve, while the training curve begins to show improvement. This suggests that the network has learned rotation.}
\label{img:11_25_3_entropies}
\end{figure}

The problem space for learning rotation is different to the problem space for learning structure prediction. A learning rate of 0.0004 appears to work well for structure and pose, with a learning-rate of 0.004 for pose only. It is possible to use different learning rates for different parameters. Experiment 2021-11-29-3 (Appendix \ref{appendix:experiments}) uses this split learning rate, but otherwise the same parameters as experiment 2021-11-25-3. Figure \ref{img:2021_11_29_3_rots} shows the distribution of the differences between the input and output rotations of the test set during training. Although the results do improve as training progresses, the final distribution is wider than the final distribution from experiment 2021-11-25-3. This suggests that learning pose must be slowed down as the structure is improved. Figure \ref{img:2021_11_29_3_rots} also shows a pronounced artefact starting at step 60. This correlates with a significant drop in the loss (both test and train) and a considerable drop in the predicted sigma. Around this point in the training, sigma prediction drastically improves, increasing the loss for poor rotation predictions.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/2021_11_29_3_rots.png}
\caption{A heatmap showing the difference between the input and predicted rotations when a split learning rate is used. The test set is 500 items in size. Brighter categories contain more examples. Training progresses from the top of the heatmap downwards. The top of the heatmap shows the first training step where the distribution is widest. Further down the heatmap, the distribution narrows as the network begins to converge.} 
\label{img:2021_11_29_3_rots}
\end{figure}
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\section{Representing Rotation}
\label{sec:reprot}

Rotation in three dimensional Euclidean space - the $SO(3)$ group - can be represented in a number of ways. Euler angles (or pitch, roll and yaw), \emph{Angle-Axis} form, rotation matrix and quaternions are the most popular and well-known. Throughout this thesis so far, we have used the angle-axis formula with the magnitude of the vector representing the angle. HOLLy predicts 3 numbers to represent a rotation.

While HOLLy appears to predict rotation, the variation in the entropy increases towards the end of training (see figure \ref{img:entropy_11_18_2}). 
 The angle-axis representation used thus-far in HOLLy is discontinuous; zero length vectors, vectors over $2\pi$ or under $-2pi$ cause discontinuities. Recall from Chapter \ref{chapter:introduction}, section \ref{sec:ai} - \gls{ANN}s are universal approximators for \emph{continuous} functions. HOLLy, like the majority of \gls{CNN}s is trained using backpropagation and a particular gradient descent technique. Any discontinuity would, by definition, not have a smooth gradient and would need to be \emph{skipped over} by the optimiser.

\citet{zhouContinuityRotationRepresentations2019} present two alternative rotation representations that are \emph{continuous}, including formula for conversion to and from their representations. They show that any representation of $SO(3)$ is discontinuous in 4 or fewer dimensions; this includes the quaternion representation. They propose five and six parameter representations - we will focus on the six parameter version, as this has been used with success by \citet{xuDISNDeepImplicit2019a}. 

\clearpage

Equation \ref{eq:to_6D} describes how a rotation matrix can be converted to the 6 parameter representation, simply by removing the final column. To covert back to a rotation matrix, equations \ref{eq:from_6D} and  \ref{eq:from_6D_B} describe the process.

\begin{equation}
g_{GS}
\begin{pmatrix}
\begin{bmatrix}
\vertbar & \vertbar & \vertbar  \\
a_1 & a_2 & a_3 \\
\vertbar & \vertbar & \vertbar
\end{bmatrix}
\end{pmatrix}
=
\begin{bmatrix}
\vertbar & \vertbar   \\
a_1 & a_2 \\
\vertbar & \vertbar
\end{bmatrix}
\label{eq:to_6D}
\end{equation}

\begin{equation}
f_{GS}
\begin{pmatrix}
\begin{bmatrix}
\vertbar & \vertbar   \\
a_1 & a_2 \\
\vertbar & \vertbar
\end{bmatrix}
\end{pmatrix}
=
\begin{bmatrix}
\vertbar & \vertbar   \\
b_1 & b_2 & b_3 \\
\vertbar & \vertbar
\end{bmatrix}
\label{eq:from_6D}
\end{equation}

\begin{equation}
b_{i} =
\begin{bmatrix}
\begin{cases}
N(a_1) & \quad \text{if } i \text{ = 1}\\ 
N(a_2 - (b_1 \cdot a_2)b_1)  & \quad \text{if } i \text{ = 2} \\
b_1 \times b_2  & \quad \text{if } i \text{ = } n
\end{cases}
\end{bmatrix} ^T
\label{eq:from_6D_B}
\end{equation}

Modifying HOLLy to use the new representation was straight-forward; the network now predicts 6 parameters for the rotation directly (referred to as the \emph{6P} version). Two experiments were performed using the original angle-axis representation and the new 6 parameter representation. Both networks predicted pose only, with the output-sigma and structure provided (experiments 2022-07-25 and 2022-07-25-2 are shown in figures \ref{fig:6pentropy_right} and \ref{fig:6pentropy_left}).

Recall from section \ref{sec:learn_rotation} we find the difference between the predicted and true rotations by computing the \emph{norm of the difference of quaternions}. This value, which ranges between 0 and $\sqrt{2}$, is computed for every item in the test dataset and placed into a histogram of 100 bins. Each histogram is one horizontal line of the heatmap. Both heatmaps show the differences trending towards zero, as expected when the structure is provided.

During the later stages of training, both experiments show a pattern of \emph{hot-spots} followed by faint lines, indicating a very narrow distribution, followed by a very wide distribution. Figures \ref{fig:6pentropy_right} and \ref{fig:6pentropy_left} show this pattern more clearly when the entropy is computed. The original HOLLy, with its angle-axis representation shows a decreasing entropy between steps 0 and 200 at the macro-level, but with large variation at the micro level. In contrast, the 6P version has a faster entropy reduction, achieving a similar level of entropy by 100 steps. In addition, the variation in entropy is much smaller at the micro level than in the original. However, the 6P version still shows very large fluctuations in entropy at a similar point in training time as the original.

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_25_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, using the 6P rotation representation.}
\label{fig:6pentropy_right}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_25_2_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, using the original rotation representation. }
\label{fig:6pentropy_left}
\end{figure}

In the 6P experiment, the increase in entropy and variation is correlated with an input sigma around 4.5, at around 8 epochs of training time. To investigate this pattern, two further experiments were conducted: 2022-07-28 uses the same sigma curve as 2022-07-25 but runs for only 8 epochs. Figure \ref{fig:2022-07-28} shows the corresponding rotation difference entropy plot. The same, large variation occurs towards the end of training, correlating with an input sigma value around 4.5. This suggests that the network can learn rotation very quickly, in fewer than 8 epochs, but only up to a certain level of input image blur.

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_07_28_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, using the 6P rotation representation but only for 8 epochs.}
\label{fig:2022-07-28}
\end{figure}

The second experiment (2022-07-28-3) runs for 8 epochs but uses a different input sigma-schedule that terminates at 4.58. Figure \ref{fig:2022-07-28-3} shows the corresponding entropy plot - a decreasing variation of pose differences as training progresses, with only one instance of a \emph{hot-spot} around step 9000. The wide variation of entropy seen in the latter half of experiment 2022-07-28 is not present. This suggests that the 6P network can learn rotation quicker than the original.

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_07_28_3_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, using the 6P rotation representation, over 8 epochs, using an input sigma schedule that terminates at 4.5. }
\label{fig:2022-07-28-3}
\end{figure}

To test this hypothesis, a further experiments were conducted - 2022-08-03-2 attempts to estimate the pose given a structure, over 8 epochs only, using the original angle-axis representation. The input-sigma schedule and hyper-parameters from experiment 2022-07-28-3 are used. Figure \ref{fig:2022-08-03-2} shows the results - the entropy increases over training, with the network failing to learn rotation. Rather than tend toward zero, the rotation differences are spread across the range, strongly suggesting the network has failed to converge.

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_03_2_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, using the original rotation representation. The original rotation representation fails to converge when using the same parameters as the successful 6P representation.}
\label{fig:2022-08-03-2}
\end{figure}

So, far only pose has been considered. How does the 6P version affect the model reconstruction and the detection of the input-sigma? Experiment 2022-07-24 attempts to predict pose, sigma and structure using the Stanford Bunny model as before. A baseline experiment - 2022-07-23 - was also conducted as a comparison case. Figures \ref{fig:fullfatheatmapleft} and \ref{fig:fullfatheatmapright} shows the rotation difference heatmaps for each experiment. The rotations in both cases appear to improve to a maximum around half-way through training, deteriorating for the latter half of training. This is largely due to both networks reproducing a mirrored version of the structure. The RMSD alignment scores are 0.143828 and 0.141337 for the 6D and baseline versions respectively.


\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_23_heatmap.png}
\caption{A heatmap showing the difference between the input and predicted rotations with the original rotation representation. Structure, pose and output-sigma are predicted.}
\label{fig:fullfatheatmapright}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_24_heatmap.png}
\caption{A heatmap showing the difference between the input and predicted rotations with the 6P rotation representation. Structure, pose and output-sigma are predicted.}
\label{fig:fullfatheatmapleft}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/2022_07_24_capture.png}
\caption{A visualisation of the alignment process in the program CloudCompare. The recreated Stanford Bunny is shown using white dots. Note the accurate but mirrored structure.}
\label{img:2022_07_24_capture}
\end{figure}
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\subsubsection{Changing the baseline.}
\label{sec:change_base}
The entropy scores on pose-only suggest the 6P version can learn rotation faster, producing a smoother loss curve than the original angle-axis representation. Both versions suffer from higher entropy variance later in training. The 6P version shows a clear demarcation at a certain sigma value. This is less clear in the baseline. 

When predicting pose, structure and sigma, both networks reproduce an acceptable structure, albeit mirrored. This makes the analysis of the rotation prediction more difficult as the networks must compensate for the incorrect structure.

As the 6P version appears to learn faster, down to a particular value of input-sigma, we ran a further experiment with a new set of hyper-parameters in order to see if a new and improved baseline could be found. 2022-07-31 ran for 20 epochs, with an input sigma-curve ranging from 10 to 3.56. In addition, the learning rate was split, with the point structure learning rate set at 0.001, whereas the pose learning rate remained the same (at 0.0004). The motivation for this change is that learning rotation appears to be smoother and faster in the earlier stages, suggesting the larger movements in the structure might be accommodated by the network, leading to overall faster convergence in both structure and pose. Recall from section \ref{sec:learning_rates} that using the default learning rates of 0.001 gave poor results.

The results are shown in figures \ref{fig:2022-07-31-left} \& \ref{fig:2022-07-31-right}. Again, at a certain point in training, the pose differences become more erratic, roughly corresponding to the point where sigma drops below 4.5 as before. Nevertheless the final structure is not mirrored and when aligned with CloudCompare, results in an RMSD score of 0.086253; the final structure is almost indistinguishable from the ground-truth. Furthermore, an intermediate structure from epoch 16 was also checked against the ground truth using CloudCompare - resulting in an RMSD score of 0.0899743. Epoch 16 occurs just before the transition to an erratic entropy. This suggests that any further improvements in structure are minor but might be to the detriment of learning pose consistently.
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\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_31_heatmap.png}
\caption{A heatmap showing the difference between the input and predicted rotations with the 6P rotation representation, split learning rate and new input-sigma schedule, terminating at 3.56. Structure, pose and output-sigma are predicted.}
\label{fig:2022-07-31-left}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_07_31_entropy.png}
\caption{The Entropy plot of the quaternion differences between original and predicted poses, corresponding to figure \ref{fig:2022-07-31-left}.}
\label{fig:2022-07-31-right}
\end{figure}
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\section{Anisotropic scaling}
\label{sec:scaling}
Scaling is another affine, linear transformation that can be modelled and predicted. Isotropic scaling (or just scaling) alters all dimensions by the same value. More generally, anisotropic scaling scales each axis independently by any amount. Scaling may better reflect the underlying dataset in certain cases (we will consider this further in Chapter \ref{chapter:worms}). Scaling one dimension only results in the apparent \emph{stretching} or \emph{shrinking} of the structure along that dimension.

By adding a scaling matrix to the differentiable renderer - predicting 4 additional parameters - we can model scaling in a particular dimension. It has been observed that the CEP152 centriole complex varies in height \citep{wineyCentrioleStructure2014}. This could be modelled by adding scaling factor along the Y axis to HOLLy, with the expectation that the final structure would be improved. Equation \ref{eq:scale_matrix} describes how our predicted points are scaled in one dimension. This matrix is applied before any pose matrices are applied, in HOLLy's rendering pipeline.

\begin{equation}
Scale_y =
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & S_y & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}
\label{eq:scale_matrix}
\end{equation}

The value $S_y$ is an additional parameter predicted by the network. Despite our input being scaled along the Y axis only, the scale axis of the output is dependent on the predicted structure's frame of reference We decided to predict the scale axis in addition to the scale magnitude, finding the rotational transformation of the input Y axis to the output Y axis. Our transformation rendering pipeline is altered to included a scale axis rotation matrix - $S_a$ - applied before and after the scale matrix along the Y axis - $S_y$. The rotation matrix - $R$ - and translation matrix - $T$ - remain unchanged. Equation \ref{eq:scale_pipeline} describes the stretch modelling pipeline. When attempting to model stretch, we predict an additional 4 variables - the stretch magnitude and the 3 components of the axis-angle stretch vector.

\begin{equation}
\label{eq:scale_pipeline}
M = R_{x,y,z}T_{x,y}S_a^{-1}S_yS_a
\end{equation}

The decision to model the stretch axis separately was both an attempt to decouple the scale prediction from the rotation prediction, and simplify the rendering pipeline. It is possible to model scale in simulated data by predicting $S_y$ alone, if the input data is stretched along only the Y axis (as was the case in all our experiments). In order to do this however, the basis for the reconstructed model must be known, i.e. which axis in the network's reference frame is the equivalent of the Y-Axis in our simulated input data?

Correlations between the input and output scale magnitudes were calculated for a number of experiments. Table \ref{table:stretch_correlation}
lists both the Spearman's Rank Correlation, Kendall's Tau and their corresponding p-values for three experiments. In each case, the pose, structure and scale variables were predicted by the network. These metrics are calculated over the entire training run. It was expected that the correlation scores would increase as training improves, but the per-epoch correlations had no discernible pattern. 

\begin{table}[H]
\centering
\begin{tabular}[t]{|c|c|c|c|c|}
\hline
Experiment & S.Cor & S.pvalue & K.Cor & K.pvalue \\
\hline
2021-01-18-exp-st-4 & 0.3445 & \num{2.2e-15} & 0.2145 & \num{1.8e-15} \\
2021-01-18-exp-st-3 & 0.4 & \num{1.2e-20} & 0.2847 & \num{6.9e-21} \\
2021-01-18-exp-st-2 & 0.1147 & 0.0103 & 0.0773 & 0.0109 \\
\hline
\end{tabular}
\caption{Correlation values between input and output stretch magnitudes.}
\label{table:stretch_correlation}
\end{table}

Figure \ref{img:stretch_axis} shows the network attempting to optimise the scale axes. In each experiment, the network failed to align the scale axis with the Y  of the derived model. Figure \ref{img:stretch_3d} shows the Stanford Bunny model being stretched along the derived scale axes (on the left-hand side, drawn in green). The resulting model is distorted as this axis does not align with the derived reference frame - the Y axis should stretch from the feet of the rabbit to the top of the ears, but the resulting axis reaches from the tail to the nose, scaling the model in an incorrect direction. In each experiment, the scale axes changed as training progressed, but never converged on the correct values. Although the P-values for two experiments show significance, the correlation score itself is small.

Modelling scale was regarded as a way to increase the accuracy of the derived structure, as the network would model the CEP152/HsSAS-6 complex problem more closely. However, a longer structure would very likely contain more localisations and therefore have a greater integrated intensity. While normalisation would compensate for this difference, the network would need to increase the output-sigma to compensate for the lack of additional points in the fitted structure.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/stretch_axis_01.png}
\caption{The scale axis values from scale experiment 2021-01-18-exp-st-2, showing change over training. The three separate components of the angle-axis vector are plotted in three different colours against the training step.}
\label{img:stretch_axis}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/stretch_3d_01.png}
\caption{A capture from a 3D visualisation of the scale axis. On the right are the cardinal axes, with the Y axis in green. On the left, is the Stanford bunny model, stretched along the derived scale axis. This axis is is not aligned with the principle Y axis of the reconstructed bunny model, hence the stretching appears to proceed along an axis from top-left to bottom-right.}
\label{img:stretch_3d}
\end{figure}
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\subsection{Simpler scaling.}
Rather than predict a second rotational basis for our scaling, it is simpler to use a global scaling matrix with three parameters, applied after any translation or rotation. Fewer variables should be quicker to train, and more likely to converge.

\begin{equation}
Scale_m =
\begin{bmatrix}
S_x & 0 & 0 & 0\\
0 & S_y & 0 & 0\\
0 & 0 & S_z & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}
\label{eq:simple_scale_matrix}
\end{equation}

\begin{equation}
M = S_{x,y,z}T_{x,y}R_{x,y,z}
\label{eq:modelview2}
\end{equation}

\begin{equation}
S_n' = 1.0 + SoftSign(S_n) * A
\label{eq:scalefunc}
\end{equation}

Equation \ref{eq:simple_scale_matrix} describes the basic matrix, with equation \ref{eq:modelview2} describing the new transformation steps. HOLLy now predicts a further three parameters, $S_x$, $S_y$ and $S_z$. The output of the network is passed through a function, described by equation \ref{eq:scalefunc}, where $A$ is a fixed scalar. The \emph{SoftSign} function is described in section \ref{sec:translation}.

\clearpage

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_12_3_stretch.png}
\caption{A plot of the mean difference between input and predicted stretch variables $S_x$ (red), $S_y$ (green) and $S_z$ (blue) (experiment 2022-08-12-3). The difference reduces for all variables but Z initially increases and remains considerably high throughout training compared to the other two. The mean is calculated across the batch (32 items) for each step of training.}
\label{fig:2022_08_12_3-left}
\end{figure}

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_12_3_entropy.png}
\caption{Entropy plot of rotation differences (experiment 2022-08-12-3) when anisotropic scale is also modelled. The entropy decreases in a similar fashion to earlier experiments where scale is not modelled.}
\label{fig:2022_08_12_3-right}
\end{figure}

\clearpage

Figures \ref{fig:2022_08_12_3-left} and \ref{fig:2022_08_12_3-right} show the results from experiment 2022-08-12-3. In this run, HOLLy attempts to predict the rotation, translation and stretch parameters, with a given structure (pose-only). The stretch multiplier variable ($A$), is set to $0.5$. The remaining hyper-parameters are kept the same. The entropy of the rotation differences reduces considerably as training progresses (figure \ref{fig:2022_08_12_3-right}). Two of the three stretch variables - X and Y - are predicted with increasing accuracy, but the final variable - Z - follows a different curve. Rather than the difference between the input and output decreasing, it increases for the first third of the training, then decreases. Throughout the experiment, it remains considerably higher than both X and Y.

Increasing $A$ to one in experiment 2022-08-12-4, reduces the accuracy of both the stretch and rotation predictions. Figure \ref{fig:2022_08_12_4-left} shows a plot of the differences between the input and output stretch variables. Figure \ref{fig:2022_08_12_4-right} shows a plot of the entropy of the differences between rotation input and output.

\clearpage

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_12_4_stretch.png}
\caption{A plot of the mean difference between input and predicted scale variables $S_x$ (red), $S_y$ (green) and $S_z$ (blue) (experiment 2022-08-12-4). The variation in anisotropic scale ($A$) has been increased to 1.0. The mean is calculated across the batch (32 items) for each step of training.}
\label{fig:2022_08_12_4-left}
\end{figure}

\begin{figure}
\includegraphics[width = \textwidth]{images/2022_08_12_4_entropy.png}
\caption{Entropy plot of rotation differences for experiment 2022-08-12-4.}
\label{fig:2022_08_12_4-right}
\end{figure}

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_15_stretch.png}
\caption{A plot of the mean difference between input and predicted stretch variables $S_x$ (red), $S_y$ (green) and $S_z$ (blue) (experiment 2022-08-15). The network has trained for 40 epochs instead of 20.  The mean is calculated across the batch (32 items) for each step of training.}
\label{fig:2022_08_15-left}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_15_entropy.png}
\caption{Entropy plot of rotation differences for experiment 2022-08-15.}
\label{fig:2022_08_15-right}
\end{figure}
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The first experiment, 2022-08-12-3, appears to have reached a maximum accuracy for the X and Y stretch variables, whereas the Z variable appears to be still improving. The second experiment appears to still be improving its rotation prediction and the X and Y stretch prediction by the time the training had finished. This suggests that training for more epochs might be beneficial. Figures \ref{fig:2022_08_15-left} and \ref{fig:2022_08_15-right} show the results from experiment 2022-08-15 - essentially the same as the previous experiment, but running for 40 epochs instead of 20. The stretch accuracy has slightly improved for all axes, but the rotation accuracy has improved greatly, reaching a Shannon Entropy of approximately 0.5 as opposed to 0.8.

At this point we have only predicted the pose - the structure has been provided. Experiment 2022-08-16-2 predicts both pose and structure, starting with a random assignment of points, culminating in a good structure and pose prediction. Figure \ref{fig:2022_08_16_2-left} shows the stretch and rotation prediction accuracy over training for this experiment. The stretch accuracy appears to be poor - in particular the difference between the input and output $S_y$ increases towards the end of training. However, when predicting both structure and pose, this comparison is not as useful as when predicting just pose; the final derived structure may be \emph{squashed} in this dimension, with the excessive $S_y$ used to compensate.

Rotation accuracy fails to improve at the early stages, but eventually reduces very quickly. The final structure is well realised and not mirrored, with an RMSD score of $0.0537$ (a random selection of points over a similar area would score approximately $0.162$ at the world scale of $-1$ to $1$).

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_16_2_stretch.png}
\caption{A plot of the mean difference between input and predicted stretch variables $S_x$ (red), $S_y$ (green) and $S_z$ (blue) where structure is predicted in addition to the pose parameters (experiment 2022-08-16-2). The mean is calculated across the batch (32 items) for each step of training.}
\label{fig:2022_08_16_2-left}
\end{figure}

\begin{figure}
\centering
\includegraphics[width = \textwidth]{images/2022_08_16_2_entropy.png}
\caption{Entropy plot of rotation differences when anisotropic scaling, rotation, structure and output sigma are predicted (experiment 2022-08-16-2).}
\label{fig:2022_08_16_2-right}
\end{figure}

One clear problem is the stretch difference on the Z axis is considerably larger than either the X or Y. It was thought that this might be because of where scaling occurs in the calculation of the transformation matrix. Any scaling performed along the Z-Axis will not be detectable if the scaling matrix is the last transformation applied. Conceptually, scaling occurs after all other transformations, appearing first in equation \ref{eq:modelview2}. To test this hypothesis, experiment 2022-08-23 places scale as the last term in the pose calculation, as defined in equation \ref{eq:modelview3}.

\begin{equation}
M = T_{x,y}R_{x,y,z}S_{x,y,z}
\label{eq:modelview3}
\end{equation}

\begin{figure}[H]
\includegraphics[width = \textwidth]{images/2022_08_23_stretch.png}
\caption{A plot of the mean difference between input and predicted stretch variables $S_x$ (red), $S_y$ (green) and $S_z$ (blue) for experiment 2022-08-23.  The mean is calculated across the batch (32 items) for each step of training.}
\label{fig:2022_08_23-left}
\end{figure}
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\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/2022_08_23_entropy.png}
\caption{Entropy plot of rotation differences for experiment 2022-08-23.}
\label{fig:2022_08_23-right}
\end{figure}

Figures \ref{fig:2022_08_23-left} and \ref{fig:2022_08_23-right} show the resulting stretch and rotation accuracy for experiment 2022-08-23. The prediction of the stretch variables converges slower than before, and by the end of training, the stretch accuracy appears to be no better than in the previous experiments. The rotation entropy decreases, before slightly increasing, then dropping quickly during the latter half of training. It appears to still be on a downward trend as training ends. 

One possible hypothesis is that the order of the transformation matrices has an effect on the level of accuracy the network can achieve on each transformation; these matrices occurring later in the transformation equation (and therefore, conceptually being applied to the model first) are better predicted. 

Modelling scale has greater relevance in Chapter \ref{chapter:worms}.

\section{Nuclear Pore experiments}
To further test our hypothesis that HOLLy can discern experimental structures, we conducted a series of experiments on the \emph{nuclear pore complex}. This particular protein complex has been identified as a \say{versatile reference standard} by \citet{thevathasanNuclearPoresVersatile2019}; the flourescent labels are arranged at distances that can be resolvable by SMLM techniques such as PALM and STED, the diameter of the structure is approximately 107nm and there is a wide choice of labels. The authors chose to label the protein Nup96 in the nuclear pore, as \say{it is present in 32 copies} and forms into two rings that exhibit eight-fold symmetry.

\subsection{Data processing}
The data used in the experiments performed by \citet{thevathasanNuclearPoresVersatile2019} is available online \footnote{\url{https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD8}} and consists of a number of \emph{\gls{CSV}} and \emph{\gls{mat}} files. Several files covering a variety of experiments are available - over 400 in total.

We begin by focusing on the file \emph{GFP\_AB-AF647\_190517\_1\_sml.csv}. Nuclear pores derived from \emph{Homo sapiens} are labelled with mEGFP and the AF647 antibody. The images were obtained using a number of SMLM techniques (STED, Airy-scan and confocal among others). Localisations were made by fitting a Gaussian using the MLE method, using the software SMAP\footnote{\url{github.com/jries/SMAP}}. The CSV must be converted into an image, in order to be used by HOLLy. We use our own program, \emph{pore-favor} (Appendix \ref{appendix:code}). Figure \ref{img:npore} shows the results of rendering this particular dataset. Immediately it is clear that the majority of the pores are aligned with their rings visible - the \emph{top view} as described by \citet{thevathasanNuclearPoresVersatile2019}. In addition, there are a number of bright spots that do not appear to be pores.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/npore.png}
\caption{The result of rendering the localisations to an image using our program \emph{pore-favor}. Many nuclear pores can be seen, with varying level of brightness. The scale of this image is approximately 4.3nm per pixel. The sigma value for the Gaussian used to represent each localisation was 1.8 - 7.7nm, with a full-width half-maximum of 4.4 pixels or 19nm. The contrast and brightness of this image has been enhanced for readability. }
\label{img:npore}
\end{figure}

\subsubsection{Ilastik}

Before we can apply HOLLy to the nuclear pore dataset, we must generate a set of smaller images, each containing a single nuclear pore. Several methods exist to \emph{segment} biological data; we chose the program \emph{Ilastik} \citep{bergIlastikInteractiveMachine2019}. The process is partly interactive - a sample of the object is selected by the user. \emph{Ilastik} uses this example to learn what is background and what is not, identifying individual examples at a later step. After processing with \emph{Ilastik}, many of the smaller bright spots have been removed, as well as many of the pores that appeared to touch.

At this stage, we return to our program \emph{pore-favor}, which cuts out each individual pore and performs a simple augmentation by rotating the image by $90^\circ$ increments. Figure \ref{img:pore_montage} shows a sample of the dataset, which consists of 475 pores, for a total of 1900 images after augmentation. The process is not perfect - even in the small sample some images contain more than one pore. Others appear to have a small \emph{hot-spot} attached to the edge of the ring.
 
\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/pore_montage.png}
\caption{A montage of nuclear pore images from our final dataset. Each image is 52 pixels in width and height. From left to right, top to bottom, the first image is followed by three subsequent images, rotated by 90, 180 and 270 degrees.}
\label{img:pore_montage}
\end{figure}
 
 \subsection{Results}
 \label{sec:nukeporeres}
 The baseline HOLLy hyper-parameters were adapted for the nuclear pore experiments. Figure \ref{img:pore_montage} shows that the pore itself occupies a small area of the image. HOLLy is sensitive to the initial placement of the points - randomly placing points across a large area results in \emph{explosive-like} behaviour. Points that are far from occupied areas are pushed out of the frame or never move again. Therefore, the initial volume was reduced to the range $-0.25 - 0.25$ in each axis, about the origin.
 
 As the pores only occupy an area of approximately 25 pixels by 25 pixels, the detail is quite low, hence there is no benefit in starting with a high blur. The input sigma curve starts at 2.8, finishing at 0. Recall that this blur is applied \emph{on-top} of any existing blur the image may have, just as in the expansion microscopy experiments of Chapter \ref{chapter:holly}.
 
 Finally, as the dataset is quite small, the experiments were run for 80 epochs. Experiments pore-2022-08-19 and pore-2022-08-22 ran with the same hyper-parameters (see Appendix \ref{appendix:experiments}). Figures \ref{img:pore_2022_08_19_montage} and \ref{img:pore_2022_08_22_montage} show the input and output image pairs for both experiments. Both montages comprise pairs of images - the input image to HOLLy from the test set and the corresponding output image. In both cases, translation appears to be well predicted, and the toroidal structure is realised. In cases where multiple pores appear in the same image, the output-sigma has increased in order to account for the extra structure in the input image.
 
\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/pore_2022_08_19_montage.jpg}
\caption{The pair montage image for experiment pore-2022-08-19.}
\label{img:pore_2022_08_19_montage}
\end{figure}
 
\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/pore_2022_08_22_montage.jpg}
\caption{The pair montage image for experiment pore-2022-08-22.}
\label{img:pore_2022_08_22_montage}
\end{figure}

Figures \ref{img:pore_2022_08_19_structure} and \ref{img:pore_2022_08_22_structure} show the derived structures from both experiments. In the left-hand view of both experiments, the ring structure of the pore is clearly visible. However, when rotated $90^\circ$ around the vertical axis, a second structure can be seen that extends into the Z axis. The reason for this incorrect structure might be compensation for these images with multiple pores, or the need to represent brighter spots in the toroid where more fluorophores have bound. Such as structure is unlikely to be corrected in this experiment due to the lack of pores in a \emph{side-on} position in the dataset.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/pore_2022_08_19_structure.png}
\caption{Two views of the derived structure from experiment pore-2022-08-19.}
\label{img:pore_2022_08_19_structure}
\end{figure}
 
\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/pore_2022_08_22_structure.png}
\caption{Two views of the derived structure from experiment pore-2022-08-22.}
\label{img:pore_2022_08_22_structure}
\end{figure}

The pore experiments were encouraging. Despite the small dimensions of the images, the size of the dataset and the limited viewpoints, the major features of the structure are still represented. The nuclear pore experiments revealed the need for careful initial placement of the points. Figure \ref{img:pore_fail} shows the derived structure from experiment pore-2022-08-17, where the points were randomly placed across the entire world space. As the images are sparsely populated - the pore itself considerably smaller than the image - these points far from the pore do not have any gradient to follow and stop moving.

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/pore_fail.png}
\caption{Two views of the derived structure from experiment pore-2022-08-17.}
\label{img:pore_fail}
\end{figure}

\section{Conclusion}

HOLLy has been tested on a variety of data-sets, using different hyper-parameters with a variety of different options. The nuclear pore data, along with the CEP152/HsSAS-6 complex STORM and expansion microscopy data-sets test our claim that HOLLy is a general solution, able to perform well at various scales. 

We justified the various choices of hyper-parameters, loss functions, sigma-curves and optimisers from a considerable range of possibilities.

Increasing the number of modelling parameters - for example, modelling anisotropic scale in addition to rotation - or modelling structure as well as pose, requires longer training times.

A considerable amount of time was spent on assessing whether HOLLy can learn rotation and translation and how accurate the pose predictions are. \gls{LRP} is employed to further assess HOLLy's reliability.

Options for normalising and augmenting the data have been tested and discussed.

We have highlighted some of the challenges faced by HOLLy, such as symmetry, noise and representing scaling. A number of factors that a user will need to consider have been identified:

\begin{enumerate}
    \item Choosing an appropriate sigma curve, based on any existing blur, retaining some visible structure at each step but not reducing below a value of approximately 4.0.
    \item Ensuring the translation of the object in the image is minimal - that it does not \emph{clip} the borders
    but still occupies a large portion of the image.
    \item Initially placing the points randomly within a volume that covers the majority of space that the objects in the images do.
\end{enumerate}


The next chapter will change HOLLy's focus from deriving structure and pose, to labelling known structures.
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\section{Introduction}

Imaging mesoscale 3D biological structures (that is, those between the nano- and the micro-scale) is a critical problem in biology, as many processes of biological interest rely on collections of proteins or other molecules arranged into a distinct architecture. Currently two major techniques can provide data on the shape of such aggregates: electron microscopy and light (particularly fluorescence) microscopy. Electron microscopy (EM) offers resolution below 1~nm, but is limited in the thickness of the samples it can observe, and analysis is relatively complex, generally requiring multiple particle averaging~\citep{milneCryoelectronMicroscopyPrimer2013}. Fluorescence microscopy is experimentally relatively simple and can deal with larger samples, but generally yields only single images which are limited in resolution to about 250~nm~\citep{schermellehGuideSuperresolutionFluorescence2010a}.

Super-resolution techniques allow this limit to be broken, pushing the achievable resolution down to 20-100~nm. In particular, single molecule localisation microscopy (\gls{SMLM}) yields high resolution images (around 20-30~nm), while allowing large amounts of data to be collected \citep{schermellehGuideSuperresolutionFluorescence2010a,holdenHighThroughput3D2014} and being relatively experimentally simple.
SMLM imaging has a trade off between the $x,y$ and $z$ resolution: gaining information in the $z$ direction is possible, but generally at the expense of in-plane information quality~\citep{badieirostamiThreedimensionalLocalizationPrecision2010}. Therefore, 2D images will have the highest localisation quality, but clearly limit information on 3D structure.

The challenge of how to infer 3D information from 2D images has been tackled both from the perspective of synthesising EM images to create a 3D structural model~\citep{milneCryoelectronMicroscopyPrimer2013}, and in the computer vision field to infer a 3D structure from a single image of a single object~\citep{fanPointSetGeneration2017}. In recent years, deep learning has emerged as a promising approach to improve structural fitting.

Convolutional neural networks are one of the most well known forms of Deep Learning - convolving the data with a kernel~\citep{goodfellowDeepLearning2016}. This process reduces the size of the principal data dimensions, creating a number of feature maps or filters, each sensitive to a particular, local aspect of the data. Through training, the network parameters adjust to produce the required output.

Here, we use a deep learning network to infer the pose of point cloud data and 3D structure. Our algorithm HOLLy (Hypothesised Object from Light Localisations) allows us to perform a completely unconstrained model fit from 2D SMLM images.

\section{Methods}
\subsection{Modelling pose using deep learning}
HOLLy fits a 3D model against a set of 2D images of the same biological structure. The input images are typically super-resolved SMLM reconstructions, each of which is a Z projection of the structure being imaged from some unknown rotational orientation and translation. The goal is to deduce the pose (rotation and translation) for each input image and infer a single 3D model for the entire data-set.

The 3D model is a collection of points (with their co-ordinates represented by a matrix) which are initiated at random positions. The current positions of the points, and the pose corresponding to each input image, are used to generate a simulated microscopy image corresponding to each input image (with the image being projected in z into a single x-y plane). The image is rendered with a Gaussian at each point, as is standard for SMLM. Each Gaussian has the same sigma, which is a parameter of the renderer, and the resulting image is differentiable with respect to the point coordinates and sigma. Our renderer is designed to efficiently and accurately render SMLM point clouds. This is in contrast to existing state of the art such as OpenDR~\citep{loperOpenDRApproximateDifferentiable2014a}, DiRT~\citep{hendersonLearningSingleImage3D2020}, PyTorch3D~\citep{raviAccelerating3DDeep2020}, Pulsar~\citep{lassnerPulsarEfficientSphereBased2021} and DWDR~\citep{hanDRWRDifferentiableRenderer2020} which are designed primarily to render illuminated, textured meshes with perspective cameras (or in the case of Pulsar and \citet{insafutdinovUnsupervisedLearningShape2018}, rendering with spheres), our renderer is simpler and more closely models SMLM. Rather than rendering \gls{rasterised} triangles, HOLLy converts the final 2D points to Gaussians. 

We used a simple convolutional neural network (CNN) consisting of 10 layers of strided convolutions and Leaky-ReLU \citep{aggarwalNeuralNetworksDeep2018}, followed by two fully connected layers. Figure~\ref{fig_network} highlights the major components (further information can  be found in appendix \ref{appendix:suppaper}: HOLLy technical details).

The CNN yields six outputs. The position and orientation of the model are described by the translation in $X$ and $Y$, and 3 rotation parameters for which we used the axis-angle formulation. The sixth parameter is the output-sigma value which is used as the sigma for the renderer. Note that the output-sigma explicitly differs from the resolution of the input images, i.e.\ in the case where input images are themselves reconstructions of SMLM data, the sigma used for their reconstruction (\emph{input-sigma}) is not the same as output-sigma.

Rotation is represented throughout using the \emph{Angle-Axis} form; any rotation in 3 dimensional Euclidean space can be described by selecting a 3D vector and rotating around this vector by an angle between 0 and $2\pi$. Only three parameters are required as the magnitude of the vector represents the angle. The differentiable renderer relies on matrices - we can convert the angle-axis representation to a rotational matrix using formula \ref{eq_angleaxis} (where $u$ is the normalised vector and $\theta$ is the angle / length of the vector).

\begin{equation} \label{eq_angleaxis}
   R = \begin{bmatrix} 
\cos \theta +u_x^2 \left(1-\cos \theta\right) & u_x u_y \left(1-\cos \theta\right) - u_z \sin \theta & u_x u_z \left(1-\cos \theta\right) + u_y \sin \theta \\ 
u_y u_x \left(1-\cos \theta\right) + u_z \sin \theta & \cos \theta + u_y^2\left(1-\cos \theta\right) & u_y u_z \left(1-\cos \theta\right) - u_x \sin \theta \\ 
u_z u_x \left(1-\cos \theta\right) - u_y \sin \theta & u_z u_y \left(1-\cos \theta\right) + u_x \sin \theta & \cos \theta + u_z^2\left(1-\cos \theta\right)
\end{bmatrix}.
\end{equation}

In principle, if the input data were perfect, the output sigma could be fixed to be equal to the input sigma. Since this is not the case, allowing the model to predict output-sigma allows it to account for some of the noise in the data. For example, consider the case of scatter (noise in the position of fluorophores). That is essentially a stochastic blur of the model structure, so when the reconstructed 3D model (which has no scatter) is rendered, the sigma needs to be higher in order for the output to be a good match to the input.
This is discussed further in Section \ref{sec:sigma}.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{images/figure_1.jpg}
\caption{An overview of our network. Batches of images of size 128 x 128 pixels are fed to the convolution layers, which reduce the batch down to 6 parameters. These are passed to the rendering pipeline along with the 3D reconstruction matrix to produce a batch of output images. The rendering parameters Rx, Ry and Rz represent the rotation in \emph{Angle-Axis} form. \textbf{Tx} and \textbf{Ty} represent translation in the X/Y plane. \textbf{S} represents the predicted output-sigma. The 3D reconstruction matrix contains a list of vertices representing the predicted point-cloud.}
\label{fig_network}
\end{figure}

The key element of our system is the use of a CNN to predict the pose for each input image. Allowing for a pose per image is a significant advantage over techniques such as template matching based Cryo-EM \citep{milneCryoelectronMicroscopyPrimer2013}, or classification of the images by view \citep{salasAngularReconstitutionbased3D2017a} since the system is not limited to a small number of orientations, and views do not have to be determined a-priori on unknown structure in order to build a classifier.

Additionally, using a CNN to predict the pose has a big advantage in modelling a pose per image as it makes the overall optimization much more tractable. The reason for this is that the space is in some sense smooth and images that are close in appearance will usually also be close in pose. This allows the network to aggregate information from similar images in order to get a better prediction of the pose for all of them. It also allows for fast convergence because an improvement on one image can cause an improvement in many others. We illustrate this in Figure~\ref{fig_smooth}, where data that is not seen during training can generate outputs that correspond to the input.

The advantage of using a CNN can be illustrated by attempting to solve the same problem by direct optimisation. We removed the convolutional layers from the architecture shown in Figure~\ref{fig_network}, replacing them with a single $5\times N$ matrix ($N$ being the size of the training set). A training batch consists of a batch of images and their corresponding poses from that $5\times N$ matrix. These differentiable render is used to render the model with these poses.
This rendered images are compared to the corresponding input image creating a loss as before. The loss is back-propagated through the differentiable renderer and used to update the model and the poses. Various learning rates, models and optimisers were tested.

This direct optimisation approach could not reproduce 3D sample structure or model the pose correctly. We suspect this is due to both a lack of shared rotational model between data and the difficulty of modelling rotation. The results can be found in appendix \ref{appendix:suppaper}: Direct Optimisation. These results demonstrate the advantages of using a CNN in this scenario.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{images/figure_2.jpg}
\caption{Demonstration of information sharing between different poses with the CNN. HOLLy was stopped half-way through the first epoch of training, meaning only half of the data has been used for training.
Note that for the half of the data which has been seen, this corresponds to a single step of gradient descent per image, and half of the data has not yet been used at all.
Already it can be observed that in many cases on seen data (illustrated in A, C) there is correspondence between the input and output shapes (albeit imperfect as it is very early in the optimization process). The advantage of the CNN can be observed in the results on unseen data where this correspondence also exists (B, D). This partial convergence on unseen data shows that the CNN allows earlier data to assist in the convergence of data seen later, which provides a very substantial improvement over modelling poses separately.
\label{fig_smooth}}
\end{figure}

\subsection{The output is a structural model rather than a trained network}
Often, the value of a neural network is the network itself that can be used to predict, discriminate or otherwise solve a particular problem once trained. Our approach ignores the network once it has been trained; the value in our approach is the 3D model stored in the Reconstructed 3D Model matrix.

This 3D model gradually improves as training continues. The user can stop training at any time, typically when the loss stops improving. The final positions of the points in the 3D reconstruction matrix represent the final structure, whereupon the network is no longer required.

\subsection{Simulated Data Models}

In order to evaluate HOLLy, we selected a number of ground-truth point-clouds with different characteristics: a reduced version of the Stanford Bunny\footnote{\label{fn_bunny}\url{http://graphics.stanford.edu/data/3Dscanrep/\#bunny}}, the Utah Teapot\footnote{\label{fn_utah}\url{https://www.computerhistory.org/collections/catalog/102710359}} and an approximation of the CEP152/HsSAS-6 complex~\citep{siebenMulticolorSingleparticleReconstruction2018}. 

All of the models consist of a relatively small number of vertices (fewer than 400). Each have unique characteristics, such as different numbers of vertices, symmetries and voids (see Section \ref{sec:results} - Results). The Stanford Bunny and Utah Teapot are standard in computer vision tests as they have properties that are likely to prove challenging. The Utah teapot is close to, but not quite, symmetric, and the Stanford bunny has fine structure (ears) but also relatively large areas of smooth structure (back). These properties showcase the potential of the method to yield results as experimental data improves.

As we have complete control of data-set generation from synthetic models, we must choose the distribution of data across the translation and rotation space. We uniformly sampled the 3D rotation group---SO(3)---which consists of all rotations in Euclidean $\Re^3$ space, centred at the origin, using the equation presented by \citet{kirkGraphicsGems1994}\footnote{ \label{fn_rotate}\url{https://demonstrations.wolfram.com/SamplingAUniformlyRandomRotation/}}. The models used in the simulated data are small enough to be rendered \lq on-the-fly\rq\ into images as the network trains.

\subsection{Differentiable renderering}

To generate an image from a 3D model and pose parameters, a rendering pipeline is required to \emph{rasterise} the 3D scene into a 2D image, representing the 3D scene from a particular \emph{camera} viewpoint. Such pipelines are common in 3D computer graphics applications. A number of matrices are multiplied in a specific order to convert 3D primitives into discrete pixels in an image, show in equation \ref{eq_renderer}.

\begin{equation} \label{eq_renderer}
M = VPT_{x,y}R_{x,y,z}
\end{equation}

The rotation matrix (R) requires 3 parameters (the aforementioned \emph{Angle-Axis} representation), translation (T) occurs in the X/Y plane only, so only two parameters are required. Often, all such \emph{affine} transformations are combined into a single \emph{modelview matrix}. The \emph{Projection} matrix (P) is used to describe any camera effects such as perspective. In our microscopy scenario, there are no discernible perspective effects therefore this matrix is not required. The \emph{Viewport} matrix (V) transforms the coordinates into the space of the target image; X ranges from 0 to the width of the image, Y from 0 to the height of the image. Depth (or Z) is usual capped to betwen 0 and 1.

Typically 3D renderers also include a \emph{clipping} step - any primitives that lie outside of the viewport are discarded. This process is complicated by primitives that are only partially inside the view. In our experiments we guarantee that the entire object is within the viewport, therefore clipping is omitted.

The points that represent our structure are multiplied by matrix M, resulting in a series of 3D points mapped to the image. The Z depth is discarded, leaving the final pixel X/Y position. As the pipeline is represented by linear matrix multiplications, it is possible to differentiate over operations, allowing gradients to determined. This, in turn, allows us to use the difference between the input and output images as the loss when training our neural network.

The final operation required is to represent each point by a gaussian, representing a point of light. Two matrices are created of dimension (P,H,W) where W is the image width, H the height and P the number of points. The first matrix contains the X axis indices, the second the Y. The final, transformed model matrix is \emph{narrowed} and \emph{expanded}\footnote{using the pytorch \emph{narrow} and\emph{expand} functions: \url{https://pytorch.org/docs/stable/generated/torch.narrow.html} \& \url{https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html}} in such a way that when multiplied by the two indices matrices, we obtain two tensors that contain the distances from the centre of each point in X and Y. These distances are then used in the Gaussian formula described by equation \ref{eq_gausspoint}.

\begin{equation} \label{eq_gausspoint}
G(x,y) = \frac{1}{{2\pi \sigma^2}} e^{-\frac{x^2 + y^2}{2 \sigma^2}}
\end{equation}

The resulting tensor has dimensions (P,H,W) but each cell now has the correct light intensity for each point, spread over an area whose size is determined by the sigma value (see section \label{sec:sigma}). The final image is created by performing a \emph{sum reduction} on this tensor along the Z axis.

By using matrix multiplication and differentiable functions provided by PyTorch, we can create gradients at each step of the rendering pipeline, allowing \emph{back-propagation} of the loss from directly between the input and output images.

\subsection{Experimental data from biological structures}

Our main biological targets were a centriolar complex comprised of the CEP152 protein, and purified centrioles.

The first dataset was a super-resolution (STORM) microscopy data-set of CEP152, obtained and analysed as described in \citet{siebenMulticolorSingleparticleReconstruction2018}. The structure of this centro-symmetric complex has been fitted with a toroid and found to be 400~nm in diameter \citep{siebenMulticolorSingleparticleReconstruction2018}, which subsequent work confirmed \citep{kimMolecularArchitectureCylindrical2019}. This  yielded a list of localisations for each identified CEP152 structure which were reconstructed localisations into 2D images, rendering with a Gaussian. Since the number of localisations in the experimental SMLM data-sets outnumber the modelled point-cloud by a factor of 20, this process is computationally intensive, and so these images are pre-rendered and stored on disk.

This data-set consists of 4663 individual images. Some of these show incomplete labelling or are not centriole structures (such as all the fluorophores converging on a single, bright spot). Erroneous data were removed manually, reducing the data-set size to 2055. Data was augmented by a factor of 20 rotating the entire centriole within the field of view using a 2D rotational matrix, giving a final training set size of around 40,000. As the data is represented by points and not a bitmap, it can be rotated by an arbitrary angle without introducing additional artefacts. Examples of the STORM CEP152 training images can be found in the appendix \ref{appendix:suppaper}: Figure C2.

The second data-set is derived from expansion microscopy experiments to image labelled glutamylated tubulin in centrioles purified from \textit{Chlamydomoanas reinhardtii} \citep{mahecicHomogeneousMultifocalExcitation2020b}. The images are segmented and presented as tiff stacks of size 128x128x84 in xyz. A sum projection is carried out to eliminate the information in z, creating a 2D image of an unknown blur. Each image was cropped to 60x60 pixels centred on the protein complex.

As the data are represented by pixels and not a list of localisations, augmentation is limited to the four cardinal directions to avoid the creation of artefacts. The resulting data-set is 14612 items in size. As the point-spread function is not modelled, there is no base input-sigma. A Gaussian blur of decreasing sigma is applied \lq on-top-of\rq\ the existing image (see appendix \ref{appendix:suppaper}: Figure C3).

\subsection{Input images}
\label{sec:input_images}
The input to the network consists of a batch of 2D images, each of the same target object from different viewpoints. These images may be simulated (rendered from a known ground-truth 3D model) or derived from experimental data.

For both simulated and real SMLM data, rendering with a Gaussian generates a 2D image, with the resolution of the reconstruction being determined by the input-sigma.  For the simulated data the 2D point cloud is generated by applying a random rotation and translation, adding noise and projecting away Z.
For data in the form of images were blurred with a Gaussian, with input-sigma as the width.

Before being passed into the network, the input images were normalised to ensure that the pixel values fall within boundaries usable by the network (see Section \ref{sec:normal}).

Deep learning requires a large, representative training set for results to be accurate. For accurate 3D reconstruction, it is important to sample diverse angles since areas of the object not represented in the training data will not be reconstructed. In the simulated case, data-sets of any size can be generated (time permitting). However, this is not the case for the experimental data.

\subsection{Sigma}\label{sec:sigma}

The input-sigma value, which defines the level of blur (i.e.\ resolution) in the input images, is initialised at a high value (one which would produce an image with around diffraction limited resolution). The value is then decreased on a curve as the network trains. By starting with a larger input-sigma, the loss between the input and output images is smaller, with shallower gradients over larger distances. This allows the network to broadly optimise the points in the 3D reconstructed model matrix, refining finer detail as the input-sigma is reduced.

The lowest value for sigma can be set to the expected localization error for a particular SMLM experiment. The input-sigma curve can be found in the appendix \ref{appendix:suppaper}: Figure S1. The output-sigma (that is, the sigma used by the differentiable renderer to create images from the hypothesised model) is predicted by the network. The output-sigma can be set to match the known input-sigma, but early experiments suggest that predicting the output-sigma increases the network's tolerance to scattered or missing fluorophores. By increasing the output-sigma the blur increases, accommodating the scattered points.

In experimental data, we would expect around an $\sim$8nm scatter in position due to the antibody used and an additional $\sim$12nm degradation in precision due to the localisation accuracy. Such values suggest an expected resolution around 20nm, with an expected sigma around 10nm. For our STORM CEP152 experiments we set the lower-bound of the input-sigma to a value of $\sim$3.2 pixels, which equates to 30nm using the scale provided with the data. The input-sigma changes at the end of each epoch, rather than continuously, giving a \lq stepped-curve\rq\ (see appendix \ref{appendix:suppaper}: Note 3 - input-sigma Hyper-parameter and Figure S1). This is due to the images being pre-rendered before training begins. This decision was made for performance reasons.

The expansion microscopy centriole data-set has a scale of 14nm per pixel. The additional input sigma curve begins at 2.8 pixels ($\sim40$ nm), reducing to zero. The smaller initial input sigma attempts to account for the smaller image size and the unknown resolution of the data.

\subsection{Loss function}\label{sec_loss}
The loss is calculated directly between images by comparing the pixel values between the input data and the predicted result, using the PyTorch L1 Reduction option\footnote{\url{https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html}} with the \lq sum\rq\ reduction. Rather than use the L1 loss between entire images, a mask was generated from target image. The loss was calculated only for these pixels that are within the mask, with areas outside the mask set to zero for both input and output images.

\subsection{Reconstructed 3D Model Matrix and Normalisation}\label{sec:normal}
As training progresses, the matrix of 3D points that represents the reconstructed 3D model moves from a random positions to yield a recognisable structure. The size of this matrix (the number of points to optimise) is ultimately limited by the amount of memory and time available to the end user. The matrix size is chosen by the user before training starts. In simulated tests, the number of points responsible for generating the input image is generally known, except when multiple fluorophore reappearances per point are simulated.

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_3.jpg}\\
	\end{center}

	\caption{Examples of a reconstructed Stanford Bunny using different sizes of 3D reconstruction matrices. Figure A contains 100 vertices. Figure B contains 350 vertices, the same number as the underlying ground truth. Figure C contains 1000 vertices. HOLLy manages to reproduce the basic shape throughout.}
\label{fig:changing_n}
\end{figure}

Since the number of points affects the integrated intensity of the image, and thus the loss, the number of points is linked to the appropriate learning rate. 
Normalisation was therefore required to bring the training data into numerical ranges the network can process without generating extreme gradients. The image tensor was divided by the integrated intensity, followed with a multiplication by a fixed scalar. Figure~\ref{fig:changing_n} shows three examples of Stanford Bunny Reconstructions, each with a different size of 3D reconstruction matrix, with normalisation applied. In each case, the basic shape is recognisable, with increasing detail.

\subsection{Hyper-parameter choices}

Hyper-parameters are the user-chosen settings \citep{goodfellowDeepLearning2016}, rather than the learned parameters. Our parameters were chosen using a combination of existing defaults and explorations within reasonable ranges.

To verify that the learning rate selected was appropriate the suggested value of 0.004 for the Adam Optimizer \citep{Kingma2014AdamAM} was varied by a factor of 10 in both directions, stopping when structure reproduction began to fail, with a score of 0.0004. %The learning rate in the model is very closely related to the input-sigma and output-sigma values, with decreasing output-sigma resulting in an increasing error rate. 

The simulated data-sets used comprised 40,000 images, generated from an initial set of 2000 images. Each image was augmented 20 times by a random rotation around the Z axis to better match the experimental data.

The number of images presented to the network at each training step (the batch-size) can affect the final accuracy of the network \citep{kandelEffectBatchSize2020}. A batch-size of 32 was selected as appropriate. Decreasing the batch size too far caused reproduction to suffer and increasing too far caused memory usage to become computationally limiting.

The final parameter considered was the number of epochs (that is, the training time). An epoch is completed when the network has processed the entire training set once. A range of number of epochs were tested, with a value of 40 being found to be an acceptable trade-off between accuracy and time.

This baseline for training with simulated data was chosen after a number of results from earlier tests, with the restrictions of the final experimental data in mind. The most important of these is the training set size and construction. Experiments with increasing the size of the simulated training set gave improved results, but we are restricted in the size of the real, experimental data. Therefore we chose to match the size of the experimental data-set when performing the simulated experiments.

Further details of these hyper-parameters used in our experiments are listed in appendix \ref{appendix:suppaper}: Note 5.

\subsection{Implementation}
Experiments were carried out with a nVidia GeForce 2080Ti GPU. Training duration was around 8 hours with the settings given as the baseline. Larger numbers of points in the reconstructed 3D model dramatically increased memory usage. 

 The estimated energy use to train a model is 2.1kWh based on a measurement of 623.4kWh over 166 days. In this period, 298 models were trained and evaluated. This was confirmed by cross-checking against the wattage of the GPU and the time spent to generate a model. 

Further technical details may be found in appendix \ref{appendix:suppaper}: HOLLy Technical Details.

\section{Results}
\label{sec:results}

\subsection{Evaluation criteria}
The 3D structure which the network attempts to reconstruct is represented as a point cloud with the coordinates of each point stored in the 3D reconstruction matrix.  The network attempts to learn the orientation over time, and simultaneously improves its own internal representation of the 3D structure by comparing 2D renders of the point cloud against the training images.

The effectiveness of our approach was assessed by measuring the similarity between the input point-cloud and the resulting point-cloud stored in the model's 3D reconstruction matrix. Finding the absolute best match between two structures is an NP-hard problem, and therefore a definitive score is not possible. Given this, we selected the root mean squared distance (RMSD) between two equivalent vertices in each point-cloud as an acceptable measure. Equivalence is determined by finding the closest neighbour with the Iterative Closest Point (ICP)~\citep{arunLeastSquaresFittingTwo1987} algorithm within  CloudCompare\footnote{\url{http://www.cloudcompare.org/}}.

ICP relies on an approximate, initial alignment. We performed this step manually, then applied ICP to obtain our RMSD score, independent of the pose predicted by the network. To find an RMSD score baseline to compare against we attempted to match two random clouds covering the same world-space as our model.

The parameters used in these experiments can be found in appendix \ref{appendix:suppaper}: Experiment parameters.

\subsection{Simulated Results}

To assess the accuracy of our proposed method, a set of commonly used 3D models were chosen to evaluate the approach. The availability of a ground-truth structure allowed us to measure how well our network performs under different conditions. To validate our approach, we first performed a set of baseline experiments to determine how well the network could infer the 3D structure when only presented with 2D renders of these models.

\subsubsection{Baseline Experiments - Stanford Bunny}

The first model tested was the Stanford Bunny. This model has no symmetry, contains fine detail, protrusions and a homogeneous distribution of vertices across its surface. It contains considerably more points than the other point-clouds used, though the version in our experiments is in the order of hundreds of vertices as opposed to tens of thousands in the original point-cloud.

All results from baseline experiments were noise free (i.e. every generated fluorophore was exactly at an existing vertex position, there was only one per vertex position, and every vertex position was occupied). 
The baseline results all had low RMSD scores, considerably less than 0.17, the average score when aligning two random point clouds of the same size (Figure~\ref{fig:bl_all}). However, three of the runs showed a mirroring error, where the network mirrors the point-cloud in the dorsal plane. This is due to the lack of depth information in the training images (Figure~\ref{fig:bl_mirror}), and is a fundamental ambiguity.

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_4.jpg}\\
	\end{center}

	\caption{Baseline Stanford Bunny experiment results for each of the five runs (A--E) with RMSD score in the lower right corner of each panel. The ground truth model is shown in orange, with the inferred structure shown as blue spheres, overlaid and aligned. Runs B, C \& D returned a mirrored result, which was corrected before the RMSD was calculated. The uncorrected results are also shown below the corresponding image (F, G \& H). The scores are considerably worse when the predicted structure is corrected by a mirror operation in the X/Y plane.  The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.1.}
\label{fig:bl_all}\label{fig:bl_mirror}
\end{figure}

\subsubsection{Baseline Experiments - Utah Teapot}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_5.jpg}
	\end{center}
	\caption{Baseline Utah Teapot Experiment results for each run (A to E) with RMSD score. The inferred structure shown as blue spheres, overlaid and aligned against the ground truth model shown in orange. Each model shows incorrect symmetry with non-differentiated spout and handle. The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.2.}\label{fig:tp_all}
\end{figure}

Our second choice of model was the Utah Teapot, which posed several challenges for our method: the similarity of the handle and spout (when rendered using points), the bilateral symmetry and the large voids between the layers of points in the central body. 

It was reconstructed well and the pose was well predicted. However, the handle appeared to be the same as the spout. Both of these areas are low in information with few ground truth points. The predicted structure therefore has an additional transverse plane of symmetry not present in the ground-truth (Figure~\ref{fig:tp_all}). From the tip of the spout, to the edge of the handle, the distance is 1036nm, using the CEP152 experiment scale.

\subsubsection{Baseline Experiments - approximation of the CEP152/HsSAS-6 complex.}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_6.jpg}
	\end{center}
	\caption{Baseline CEP152/HsSAS-6 approximation experiment results for each run (A--E, top row) with RMSD score. The ground truth model is shown in orange, with the inferred structure shown as blue spheres, overlaid and aligned.\label{fig:sus_all}
    Bottom row (F--J): close up of the top row. Note the slight offset of the smaller, reconstructed cylinder from the ground-truth. The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.3.
	\label{fig:sus_close_all}}
\end{figure}

The third point-cloud used in these experiments is an approximation of the CEP152/HsSAS-6 complex \citep{siebenMulticolorSingleparticleReconstruction2018}. The approximation consisted of two cylinders, one smaller and perpendicular to the other. This point-cloud is somewhat smaller than the others and is extremely regular with large gaps between the columns of points.

The smaller, cylindrical structure is offset towards the top of the larger structure in the ground-truth; this is not reflected in the reconstruction. This is likely due to the size of the point-cloud in the view - fine detail is hard to discern when the point-cloud is small (Figure~\ref{fig:sus_close_all}). From the end of the small cylinder to the furthest edge of the larger cylinder, the distance is roughly 415nm.

Together, these baseline experiments indicate that our approach is suitable for reconstructing the overall 3D structure from a series of 2D images. Most results showed low RMSD scores and produced structures that are a good match to the original 3D models.

\subsection{Modelling Experimental Noise in Simulated Results}

Our method aims to discern structure from fluorescence microscopy images, particularly super-resolution. We therefore focused on the kinds of problems often encountered in such experiments. Fluorophores are offset from the object they are labelling, they may not bind to certain areas, or might bind multiple times. They may not illuminate consistently or they may not be separable from their neighbours. We modelled three forms of experimental noise: missing fluorophores (where no fluorophores appear for a particular ground-truth point), scatter (where a fluorophore appears at a varying distance from its ground-truth point), and multiple binding (where multiple fluorophores appear for a single ground-truth point).

\subsubsection{Scatter}

\begin{figure}[ht!]
	\begin{center}
			\includegraphics[width=12cm]{images/figure_7.jpg}
	\end{center}
	\caption{The results of the experiment into the effect of scatter. Top row (A--E): examples of training images treated with increasing scatter, as indicated by the scatter value above each panel. Bottom row (F--J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned with the ground truth model shown in orange. RSMD scores are indicated for each run in the lower right corner of (F--J). Runs in (F) and (C) respectively showed an incorrect symmetry in structure and mirroring in a vertical plane. The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.4.}\label{fig:scatter_all}
\end{figure}

Two factors can lead to scatter in fluorophore positions: the inaccuracy of the fitted position due to the limited number of photons collected, and the offset between the protein of interest and the label, with the largest effect arising from primary/secondary antibody labelling.
This noisy change of position (scatter) is modelled using a random Gaussian distribution with a particular scatter-sigma value. The scatter-sigma ranges from 0.03 pixels to 0.15 pixels (9~nm to 44~nm, given the scale in the CEP152 experimental data).

The results suggest that a scatter-sigma value between 0.06 pixels and 0.09 pixels (20~nm to 29~nm) is the cut-off point for acceptable reproduction of the structure. The run in Figure~\ref{fig:scatter_all}F shows a rare error where the structure is symmetrical along the dorsal plane - effectively giving the structure two heads. Figure~\ref{fig:scatter_all}C suffers from the mirroring problem (Figure~\ref{fig:scatter_all}).

\subsubsection{Missing fluorophores}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_8.jpg}
	\end{center}
	\caption{Results from the experiment on the effect of missing fluorophores. Top row (A--E): examples of training images with increasing probability of removing points as indicated by the value above each panel. Bottom row (F--J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned with the ground truth model in orange. Resulting RSMD scores for each run are indicated in the lower right corner of (F--J). The run in (G) showed an incorrect symmetrical structure whereas the run in (H) showed mirroring in a vertical plane. The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.5.}\label{fig:dropout_all}
\end{figure}

When a fluorescence microscopy sample is labelled, not every potential site is labelled, and not all fluorophores will fluoresce. The degree of labelling and the performance of fluorophores strongly impacts image quality. To simulate this effect
a random selection of vertex positions are not labelled with fluorophores.
Results suggest that a recognizable reproduction with a good RMSD score can be obtained with up to $\sim$30\% of the points removed (Figure~\ref{fig:dropout_all}).

\subsubsection{Multiple binding and Scatter}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_9.jpg}
	\end{center}
	\caption{Results from the Noise Experiment for each run (A to H), with resulting RMSD shown in the lower right corner of each panel. The ground truth model is shown in orange, with the created structure shown as blue spheres, overlaid and aligned. The top row (A--D) shows runs with a maximum number of flurophores per ground-truth point of 4, while the bottom row (E--H) shows runs with a maximum of 8. The left two columns (A, B, E, F) have a spawn-rate of 0.3, with the right two columns (C, D, G, H) have a spawn-rate of 0.7. Runs in (A, C, D, E, F, G) have incorrect symmetry whereas the run in (H) has mirroring in a vertical plane. The parameters for this experiment can be found in appendix \ref{appendix:suppaper}: Table 5.6.}\label{fig:noise_all}
\end{figure}
Our final noise experiment randomly chooses up to a maximum number of bound fluorophores per ground-truth point, each with a random scatter. A single ground-truth point may \lq spawn\rq\ up-to a maximum of individual fluorophores (\emph{max-spawn}) using a user-set probability (\emph{spawn-rate}). In these experiments we chose a number of parameters for \lq max-spawn\rq\, \lq spawn-rate\rq\ and scatter.

Many of these runs show symmetrical structure where none should occur (Figure~\ref{fig:noise_all}), in a manner similar to the missing fluorophores experiment (Figure~\ref{fig:dropout_all}).

These results provide additional confidence that HOLLy can produce accurate structures from experimental data. The majority of results have low RMSD scores, with identifiable structures and some tolerance to noise.

\subsection{SMLM dataset of the CEP152 Complex}
Having optimized our approach with different 3D models, we next applied it to experimental SMLM data collected on the CEP152 complex, which is part of the centriole. One important factor with this data is that the integrated intensity varies considerably across the CEP152 data-set, with the number of localisations ranging from 5,000 to 30,000. Normalisation plays a key part in making sure this intensity range can be modelled by our network. Additionally, since this data-set is limited by the number of feasible experiments, data-augmentation plays a key role in increasing both the absolute number of training images and the variety of orientations. This training data-set consists of approximately 40,000 images, augmented from an experimental data-set of approximately 2000 images. See appendix \ref{appendix:suppaper}: Figure S2 for representative images that illustrate the range of orientations and experimental noise in this training data-set.

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_10.jpg}
	\end{center}
	\caption{Examples from the first run of the STORM CEP152 data-set, rendered at different points during training as input-sigma values decreased. The top row shows input images from the test set. The bottom row shows the corresponding prediction. }\label{fig:cep_pred}
\end{figure}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_11.jpg}
	\end{center}
	\caption{Results of the five STORM CEP152 experiments (each with a top and side view image pair). The first experiment comprises image A and B, the second experiment C and D, and so forth. The torus structure within the blue point cloud is highlighted with an orange ring. See appendix \ref{appendix:suppaper} - Video 1 and Video 2 for greater clarity.}\label{fig:cep_all}
\end{figure}

After training with these images, our network converged on a central torus for the CEP152 complex (Figures~\ref{fig:cep_pred}-\ref{fig:cep_all}). This inferred structure is consistent with the confirmed structure of this protein complex \citep{siebenMulticolorSingleparticleReconstruction2018, kimMolecularArchitectureCylindrical2019}.

Figure \ref{fig:cep_pred} in particular, shows examples of the network attempting to match the training images, both in terms of structure and the input-sigma. The input images are not completely static; recall they are generated with a particular input-sigma, which decreases as training progresses. However, the output-sigma predicted by the network does not continuously decrease as the input-sigma does - rather the rate begins to flatten towards the end of training. Indeed, certain images are rendered with a higher blur than others, suggesting that certain images are being compensated for with a higher output-sigma.

The final 3D structures in Figure~\ref{fig:cep_all} can be seen more easily in the videos which accompany this paper (see appendix \ref{appendix:suppaper}: Video 1 and Video 2). When rendering these predicted structures in 2D based on the inferred orientations, they show significant blurring due to a large predicted output-sigma, even when the input-sigma was low (Figure~\ref{fig:cep_pred}). There was some noise in the inferred structure, with two \lq fringe-like\rq \ structures in some of the runs (Figure~\ref{fig:cep_all}). Some points still appear in the middle of the toroidal structure, likely because the network has been unable to optimise these points as any direction they might now move in would result in an increasing error. The density appears to be lower for a small arc on the torus, reflective of the input images that also show a similar effect. These final structures are not exact as some noise still remains. Nonetheless, the consensus result that emerges from multiple runs is a toroidal structure that matches that of the CEP152 complex.

\subsection{SIM/expansion microscopy dataset of glutamylated tubulin in centrioles}

\begin{figure}[ht!]
	\begin{center}
		\includegraphics[width=12cm]{images/figure_12.jpg}
	\end{center}
	\caption{Results of the five experiments on SIM/expansion Microscopy of glutamylated tubulin in purified centrioles (each with a top and side view image pair). The first experiment comprises image A and B, the second experiment C and D, and so forth. The cylinder structure within the blue point cloud is highlighted with an orange cylinder. See appendix \ref{appendix:suppaper} - Video 3 and Video 4 for greater clarity.}\label{fig:dora_all}
\end{figure}

To validate our method, we also applied it to a separate experimental data-set~\citep{mahecicHomogeneousMultifocalExcitation2020b} obtained using a different imaging technique. We analysed SIM / expansion microscopy images of glutamylated tubulin in purified centrioles. After training on the SIM/expansion microscopy images, our network converged on a central cylinder for this complex (Figure~\ref{fig:dora_all}). The density of points is highest in the centre of each image, with a tube-like structure visible. These 3D aspects are clearer in the appendix \ref{appendix:suppaper}: Video 3 and Video 4. There appears to be a  \lq frill-like\rq\ structure around the top to middle of the cylinder, which may reflect a particular characteristic of the input data. Many of the images show a spike like protrusion, emanating from the top of the central cylinder (see appendix \ref{appendix:suppaper}: Figure C3).

The consensus elongated cylindrical structure produced by our method is also consistent with the known structure of glutamylated tubulin in centrioles \citep{mahecicHomogeneousMultifocalExcitation2020b} (See appendix \ref{appendix:suppaper}: Figure C2).

\subsection{Handedness}

Often when reconstructing 3D shapes from macroscopic images, perspective
projection and occlusion effects can be used to infer depth. Neither of these are present in 2D fluorescence microscopy images. Without perspective projection, there is an unknown reflection of the final 3D geometry which cannot be determined from the data. This is known as the affine ambiguity~\citep{hartleyMultipleViewGeometry2004}.
Examples of this effect can bee seen in Figure~\ref{fig:bl_mirror}.

\section{Discussion}

We have demonstrated a method that enables 3D structures to be reconstructed from sets of 2D SMLM or fluorescence microscopy images without any template or symmetry constraints.
Our method, HOLLy, can tolerate both scatter and the limited labelling efficiency of experimental fluorescence images. The training process results in a 3D model of the structure encoded as a point-cloud in the 3D reconstruction matrix. Based on estimates of RMSD values against ground-truth and visual inspection of the results, we find that our approach can create accurate reconstructions of 3D macro-molecular structures.

Our results also demonstrate the limitations of the technique. Because of the use of 2D images, the technique is unable to resolve the chirality of the model. In addition, when the data quality is poor small structures are not reproduced.
As a result when the structure is close to symmetric, the final model may become actually symmetric. On experimental data, the presence of these issues could potentially be identified by training on the same data-set multiple times and examining the differences between the results.

The value of reconstructing multiple images of a structure into a single hypothesised structure has been demonstrated in cryo-EM. In SMLM such approaches exist \citet{heydarian3DParticleAveraging2021}, and show an improvement in the signal to noise ratio when combining multiple images, but performing such fits on complex structures with no constraints is extremely challenging. Here we show that, by building a 3D model and using a neural network for predicting rotation, HOLLy can discern structure from localisations with a data-set of 2000 unique images. With the increased popularity of high throughput SMLM techniques~\citep{holdenHighThroughput3D2014,barentine3DMulticolorNanoscopy2019}, HOLLy provides a way to extract structural information from large volumes of super-resolution microscopy data without assumptions.
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\section{Introduction}

Biological systems respond to external cues - the world is complex and changing and living systems must adapt to survive. By extensively studying \lq model systems\rq, biologists can understand the mechanisms underlying this responsiveness. One such organism is the nematode \emph{Caenorhabditis elegans}. This 1mm long worm lives in temperate soil environments and was the first organism to have its entire genome sequenced. At the time of writing it is the only organism to have its \emph{\gls{connectome}} mapped. The species has many advantages that make it an ideal organism for study - it is relatively simple yet still has a nervous system, patterns of cell lineage do not appreciably change between individuals, the life cycle is only a few days, it can be stored for a long time in a freezer and exhibits an unusual degree of regularity in terms of its body cells for an animal.

\citet{patelMulticellularNetworkMechanism2020} revealed that \emph{C. elegans} can adapt to differing food levels in its environment, modulating its lifespan despite changes in temperature. Maintaining performance despite a changing environment is referred to as \emph{robustness}. A complex process governs this robustness,  involving a number of genes, neurons and proteins. The authors show that the neurons ASI, ADF and NSM form a network of regulatory interactions via products of the genes \emph{daf-7} and \emph{tph-1}. These interactions change with temperature, affecting the robustness of food-sensing. Maintaining food-sensing acuity directly affects lifespan; individuals live longer in order to reproduce later when food levels are higher - \say{it is therefore advantageous to maintain such phenotypic plasticity within the reproductive temperature range} \citep{patelMulticellularNetworkMechanism2020}.

In both humans and \emph{C. elegans}, insulin-like peptides, growth factors and biogenic amines regulate each other in complex networks to modulate ageing, among other physiological outputs. The information processing mechanisms of these networks is unclear. Understanding these mechanisms more clearly would help us understand the impacts of food sensing gene networks within the nervous system, on aging as well as other health related outputs.

A large amount of labelled data exists for the neurons ASI and ASJ and the structure of \emph{C. elegans} is well known - a suitable target for verifying an automatic labelling approach. Once identified we would measure the intensity of the light emitted from the fluorophores attached to the protein products of these neurons, in order to learn more about their underlying systems. The current process requires considerable human labour - the existing dataset has over 2000 images. With high-throughput techniques becoming more accessible, automated tools will become necessary to process the data in a reasonable time.

Attempts have been made to automatically label certain \emph{C. elegans} neurons. \citet{zhanAutomatedProcessingImaging2015} use a \emph{Support Vector Machine} to detect ASI in a 2D image. Solving in 2D was deemed too inaccurate, requiring standardised images. More recently, \citet{yuFastDeepLearning2021} use a \emph{Transformer} network (see Chapter \ref{chapter:conclusion}) that learns the correspondence between a unlabelled fluorescence volume with distortions, and a human labelled canonical volume. The scale of these volumes is slighter larger and consists of multiple neurons where the variation in fluorescence for a particular neuron is not variable of interest.

Can this process be automated using HOLLy, either modified or unmodified? The neurons of interest have known structures, known positions relative to each other and are present in an animal known not to exhibit large morphological changes between individuals\citep{albertsMolecularBiologyCell2015}. The previous chapter showed that HOLLy could match a known structure to an image, accounting for rotation, translation and scale (within limits). It therefore follows that HOLLy might be able to fit a labelled structure to an image if the structures in these images do not exhibit large fluctuations.

Although HOLLy can align known structure by learning pose, the problem of fluorescence labelling has some key differences. Most importantly, HOLLy models structure directly from the fluorophores. In this particular problem the fluorophores are not attached to the structure directly, but to the protein products that may or may not exist within these structures. The level of fluorescence can (and does) change for the same neuron.

Nevertheless, we hypothesise that HOLLy can both create and align a labelled structure to an experimentally acquired image, providing an explainable and verifiable image segmentation. Recall that one major criticism of deep learning A.I. approaches is the difficulty of explaining their predictions, and verifying these predictions are based on the correct assumptions. In contrast, HOLLy's process is easily verified, it's predicted structure can be visually inspected and compared against experimental results and it's predictions are a series of pose parameters rather than a probablity vector or latent space co-ordinate.

Several approaches to cell recognition already exist, including these that make use of deep-learning. We begin by using \emph{U-Net}, a popular technique used in biological image segmentation, as a \emph{black-box} comparison case before switching to HOLLy. We show that U-Net can segment the \emph{C. elegans} dataset to an acceptable standard, highlighting the approaches' strengths and weaknesses. Finally, we attempt to use HOLLy to identify the neurons by aligning a recognisable structure to the \emph{C. elegans} data.

\section{The \emph{Caenorhabditis elegans} experiments}

\begin{figure}[H]
\centering
\includegraphics[width = \textwidth]{images/neurons.jpg}

\caption{A diagrammatic representation of the ASI and ASJ neurons - shown in pink. The worm is viewed from its left side, with the leftmost neuron of each pair more visible. The green object is the the \emph{grinder} and mouth-parts. ASI neurons are more dorsal and forward of ASJ. Image derived from \url{https://www.wormatlas.org}.}
\label{fig:wormneurons}
\end{figure}

The \emph{C. elegans} experiments and their associated data are concerned with 2 pairs of neurons: ASI and ASJ. Figure \ref{fig:wormneurons} highlights the positions of ASI and ASJ relative to the head of the worm where the \emph{grinder} and mouth-parts are located (shown in green). ASI is more dorsal and anterior than ASJ. Each pair is comprised of a \emph{left} and \emph{right} neuron, symmetrical in the midsagittal plane. The neurons themselves have a \emph{bulb-like} structure and long dendrites that extend towards the mouth.

The dataset consists of a number of experiments on different worm strains. Each directory contains a number of tiff images taken from a Hamamatsu Orca D2, with a 40X oil objective lens. Each individual worm is drawn through a microfluidic device to align the worm horizontally across the field of view \citep{chungAutomatedOnchipRapid2008, craneAutonomousScreeningElegans2012}. Additional images are derived from these \emph{raw} images, including \emph{maximum intensity projections}. mCherry is the fluorescent protein being detected, created through a transcriptional fusion, with an INS-6 promoter. The more INS-6 produced, the more mCherry produced.

The raw images themselves are 640 pixels wide and 30600 pixels tall, containing information from two detectors (sensitive to two different wavelengths) with 51 Z slices. As only one channel is used, the resulting 3D image stack (or volume) is 640 x 300 x 51 pixels. Each image has as single colour channel, encoded with a 16 bit integer. The accuracy of the camera itself is 12 bits, giving a range of 0 to 4096. The resolution in the X and Y axes is 0.3225 microns per pixel, and 2 microns in the Z axis.

\subsection{Neuroshed and Watershed}
The initial analysis of the \emph{C. elegans} dataset was performed using the tool \emph{Neuroshed}\footnote{\url{https://github.com/giovannidiana/neuroshed}}. Neuroshed relies on the watershed algorithm \citep{couprieTopologicalGrayscaleWatershed1997} to perform segmentation on the original volumes. These volumes are coloured and presented to the user who selects which segments belong to which neuron. There are a number of variations on the watershed algorithm, but the common principle follows the analogy of the geological watershed - the separation of catchment areas. Intensity or greyscale images are treated as \emph{height-maps}. The lowest points - the local minima - are identified and \emph{flooded}. Where two flooded areas meet, a barrier is defined creating the segments. Neuroshed works in the opposite direction. Rather than finding the local minima, it selects the 4 \emph{highest} (brightest) pixels and proceeds in the opposite direction - the assumption being the 4 highest peaks in the image correspond to the four neurons.

Figure \ref{img:watershed_example2} shows a result from \emph{Neuroshed}. A single image from the input volume is selected (right) and the corresponding slice from the segmentation is shown on the left. ASI is coloured red, with ASJ in off-white. Areas are strictly segmented with no overlap. Borders can be straight where no such feature exists - two \emph{catchment areas} expanded at equal rates due to a lack of features.  

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/watershed_example.png}
\caption{A example slice (28 of 51) from an original source volume (left) and the corresponding segments chosen by the user using the \emph{Neuroshed} program, for image QL923\_S1-d1.0xAutoStack5.tiff. The green bar is 10\si{\micro\metre} in length.}
\label{img:watershed_example2}
\end{figure}


\subsection{Annotations}
\label{sec:annotations}
In addition to the raw data, matching directories of annotations are available. These annotations consist of logs, images and various data files pertaining to the locations of the 4 neurons. Each raw image has a corresponding log file generated by the program, describing the actions the user took when attempting to identify the areas corresponding to the different neurons. \emph{Neuroshed} divides the raw image into segments using the aforementioned watershed algorithm, then prompts the user to identify which segments correspond to which neuron. All annotations therefore, are human derived, albeit with some algorithmic aids. As segments are chosen by an experienced human, it is possible that smaller segments may be missed or labelled incorrectly. It is also very difficult to discern left from right, hence the neurons are labelled either $1$ or $2$.

The annotation images consist of the segments, each with a supporting summary text file. The segmentation images are 640 x 15300 pixels in size and show the results of the watershed algorithm applied to the raw data. Each pixel has a single 16bit integer channel, representing the identity of the segment. By matching the identity of the segments to the ones listed in the log files, a mask can be created for each neuron. The annotation files contain summary statistics for each image, derived by the \emph{Neuroshed} program including the areas, centroids and integrated fluorescence for each observed neuron. 

Supporting these input and mask images are details on each neuron segment. The \emph{dat} files consist of 4 lines, one for each neuron. Each line contains the centre point, integrated fluorescence, size and the total fluorescence for the neuron and the background.

\subsection{Analysis of the dataset}
\label{sec:celegansdata}

Before applying HOLLy to the worm data, we made some preliminary investigations to determine the characteristics of the dataset. The set itself contains 3703 unique examples - brightfield images - of the \emph{head} end of an individual worm. Each example has a number of analysis and summary files.

Each neuron has a total, integrated fluorescence count (hereafter referred to as just fluorescence) provided by the annotation files. Figure \ref{img:lumo_worm} illustrates the differences in luminosity for each neuron based on these reported scores. For clarity, each neuron's real fluorescence is normalised by the minimum and maximum counts from the entire dataset. Not only is it clear to see that that each neuron has a variable fluorescence, but ASJ is significantly brighter, with a mean brightness of 0.48 and 0.45 compared to 0.35 and 0.38 for ASI (standard deviations of 0.18 and 0.18 for ASI-1 and ASI-2. 0.2 and 0.21 for ASJ-1 and ASJ-2).

Rather striking is the large number of neurons with 0 fluorescence, i.e they were not found in the original image. This may present problems for any machine learning technique trained on the assumption of 4 neurons, or where examples containing 4 neurons significantly outnumber these with fewer than 4 neurons. Of the 2636 images, 288 have at least one neuron with an annotated fluorescence value of 0. Of these, $95\%$ are 0 for all 4 neurons. On inspection, a worm is present but for unknown reasons, no analysis had taken place.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/lumo_worm.png}
\caption{A histogram of the normalised fluorescence of all the neurons in the dataset. Although it appears a large number of neurons have a fluorescence of 0, they account for $10\%$ of the total.}
\label{img:lumo_worm}
\end{figure}

\emph{Neuroshed} performs a number of operations when computing the fluorescence counts for each neuron - operations not immediately clear to the user. Only the 4000 brightest voxels are considered in the fluorescence counts for each neuron. Each voxel has the mode of the nearby fluorescence counts subtracted before integration (for an arbitrary value of \lq nearby\rq). Therefore, we compute our own raw counts by simply integrating the the light intensity scores underneath the masks provided. These integrated, \emph{raw} counts form the benchmark against which our deep-learning methods will be tested. 

\section{Dataset processing}
Before the images from the dataset can be passed to HOLLy or U-Net for analysis, some basic processing must take place. Each 2D image is firstly converted to a \gls{FITS} stack, 640 x 300 x 51 pixels in size, using a single 32 bit floating point number to represent the fluorescence. The corresponding masks are generated from the annotations by creating a volume with the same dimensions as the input, picking only these segments that were selected by the user, listed in the log files.

From here, a number of options can be considered such as projecting down to a 2D image - using either sum- or maximum intensity projection, removing the out-of-focus light through deconvolution and basic scaling among others. The following sections describe the processes we undertook in more detail.

\subsection{Background}
\label{sec:worm_background}
We define \emph{background} as areas of an image with no relevant information - in this particular case, an image with no fluorescent material. What is considered background in an image can take any value (or range of values, depending on context). Typically, for machine learning approaches, a value of 0 would indicate background. However, the raw experimental data will very likely not have zero values in the absence of any individual worm. Sources of non-zero background values - such as \emph{\gls{dark current}} and light leakage from the environment among others - will be noisy, exhibiting some variation. The first step in our filtering pipeline is to subtract this value from each pixel individually.

The annotation files include a value, which the program \emph{Neuroshed} subtracts from every pixel deemed to constitute part of a neuron. This value is defined as the mode of a small set of values around the neuron centres. This value has a mean of 243, a median of 271 (standard deviation 82.7) across the entirety of the dataset. Looking at the images directly by eye and making a subjective decision, the background appears to range from 240 to 280. 

The entire dataset has the following statistics:

\begin{enumerate}
    \item Minimum intensity value of 202.
    \item Maximum intensity value of 4094.
    \item Mean of 263.81.
    \item Median of 259.
    \item Standard deviation of 66.76
\end{enumerate}

Figure \ref{img:celegans_intensity} shows the counts for each light intensity score. The vast majority of voxels lie within a small range, centred around the most frequent intensity of 258.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/celegans_intensity_hist.png}
\caption{A histogram of the light intensity values detected across the entire \emph{C.elegans} dataset.}
\label{img:celegans_intensity}
\end{figure}

Figure \ref{img:celegans_intensity_100_500} shows the counts - from 100 to 500 - for the entire dataset. In this \emph{zoomed-in} view, a fast rise to to 258 and a slightly slower decline towards 500 can be seen. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/celegans_intensity_hist_100_500.png}
\caption{A histogram of the light intensity values - from 100 to 500 - detected across the entire \emph{C.elegans} dataset.}
\label{img:celegans_intensity_100_500}
\end{figure}

If we consider anything at or above the $95^{th}$ percentile as significant, there are two values we can choose. Based on the counts alone, any intensity score of 291 or above would be significant. However, as we are interested in light, we can plot a distribution based on the total integrated light - at what intensity score would 95\% of all the light in dataset fall under? This value is only slightly higher at 303.

We found that subtracting 270 from all the pixel values resulted in images with drastically reduced apparent background, whilst still retaining the key features. This conservative value falls within the $80^{th}$ percentile by count, and slightly lower in the integrated intensity count at $76^{th}$. This value was chosen after some initial experiments with the U-Net approach (covered in the next section), and is somewhat arbitrary and chosen \emph{by hand}. However, several methods exist to automatically derive a background value from the data itself, rather than relying on an informed but subjective value.

Otsu's method \citep{otsuThresholdSelectionMethod1979} iterates through every possible threshold value in an attempt to maximise the difference between foreground and background. A histogram of all possible pixel values in the image is computed. The threshold value is iterated until the sim of the values of the histogram on either side of the threshold are minimised. The Otsu method performs best when the distribution is clearly bimodal. Figure \ref{img:celegans_intensity_100_500} suggests that this is not the case in our \emph{C. elegans} images. Nevertheless, we applied the Otsu method to one of our original images to test its performance. Figure \ref{img:otsu_test} shows the results of applying the Otsu algorithm to one of the image volumes, one slice at a time. The first pair shows the 20th slice, chosen as some light from the neurons is visible but the majority of the image consists of noisy background. The Otsu derived threshold is 257. Further down the stack at position 36, we can see more of the neurons - the derived threshold is 371. If we take a maximum intensity projection and perform the Otsu method, the threshold is set at 500.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/otsu_test.png}
\caption{Three pairs of images showing the results of the Otsu algorithm when applied to an image from the \emph{C. elegans} dataset. From top to bottom: the first pair are the 20th slice from the volume and the corresponding background / foreground classification. Foreground is black, with background white. The second pair are the 36th slice and the corresponding classification. The final pair is a maximum intensity projection and the Otsu result.}
\label{img:otsu_test}
\end{figure}

A threshold of 371 or 500 results in a very tight mask around the brightest part of the neurons. It is speculated that a large portion of the out-of-focus light is being removed in this case. While this might be ideal, we are concerned with finding the value at which a 0 value can set - removal of the out-of-focus light may be more appropriately and reliably performed using deconvolution (see section \ref{sec:deconv}). Considering each slice independently results in different background thresholds - ideally all slices should be considered together. We performed this test on a small number of images, but the resulting thresholds produced images with the same tight mask around the brightest sections of the neurons.

Several algorithms to separate foreground and background have been proposed since Otsu's method. \citet{changSurveyComparativeAnalysis2006} surveyed a number of entropy and relative entropy techniques. Recall from Chapter \ref{chapter:holly} that we use the Shannon Entropy to measure the performance of HOLLy's pose prediction. The same concept can be applied to background thresholding by treating the histogram as a probability distribution, then selecting a threshold that returns yields the minimum entropy. Approaches that consider the histogram over all image pixels (commonly referred to as global entropy methods) cannot take into account any spatial correlation. \emph{Local entropy methods} attempt to fix this by creating a 2D histograms with a derived, local metric forming the second dimension, such as the average of the local neighbourhood \citep{brinkThresholdingDigitalImages1992}. More recently, \citet{zouAutomaticImageThresholding2020} propose a more complex method based on Shannon entropy, creating a series of histograms and intermediate images before combining to find the optimal threshold value.  Many of these methods are computationally expensive, particularly on a 3D image.

The background thresholding techniques mentioned do not solve our specific problem however. At this stage we are simply trying to find the value that would occur in our image if no worm were present - indeed if no light were entering the sensor at all. In the absence of a set of \emph{\gls{dark frames}}, the background value must be estimated statistically from the data. 

The fluorescent parts of the worm do not form the majority of volume. A casual observation of several of the images viewed with a maximum intensity projection reveals the majority of the pixels do not contain a neuron, or indeed, any fluorescent material at all. This concurs with the experimental parameters - INS-6 should be concentrated within the neurons. The animal itself cannot encompass the entire image due to the magnification used and the microfluidic system restricting where the worm can appear in the image. The mode of the pixel values across the entire dataset is 258, which suggests this might be a suitable background value as the background constitutes the majority of the image. However, it is highly unlikely that there is only one value for the background. Differences in the dark-current or the lighting conditions will cause small fluctuations in the sensor. Looking at every image in the dataset individually, the smallest mode is 249, the largest being 284 with a standard deviation of 4.04.

As the background forms the majority of any volume from the \emph{C. elegans} dataset, background pixels will most likely appear next to other background pixels. Rather than selecting the mode from the pixel values, we propose a method that averages the local area before the mode is taken. The mean of the current pixel and its 26 neighbours (in three dimensions) is recorded, rather than the pixel alone. This results in a list of local neighbourhood averages. We choose the mode of this list as the background (if multiple modes are found, the lowest intensity is chosen). This process is performed on each image in the dataset individually, resulting in a unique background value for that particular datum. This value varies slightly across the dataset, between 250 and 260.

The resulting image intensities are not \emph{stretched} - i.e if 270 is chosen as the threshold value, the new range is not scaled to fit within 0 to 4095.

Many of the following experiments used 270 as the value for the background when generating their datasets. However, later experiments utilised the per-image, automatic background removal.

\subsection{Noise}
\label{sec:wormnoise}
While \emph{dark current}, \gls{shot noise} and environmental lighting can be inherently noisy, there are other sources of noise  affecting the background and the neurons of interest. A major source of noise are parts of \emph{C. elegans} that are naturally fluorescent under experimental conditions. Other areas where mCherry has been expressed and INS-6 may also be present. Figure \ref{img:worm_noise} is a typical example, where more than 4 large areas are showing brightness above background, as opposed to the expected four.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worm_noise.png}
\caption{A sum projection from the \emph{C. elegans} dataset. Five large areas can be seen on the right-hand side of the image (one is darker than the other four). The dendrites are also fluorescing, extending from the right to the left of the image. The green bar is 20\si{\micro\metre} long.}
\label{img:worm_noise}
\end{figure}

\subsection{Deconvolution}
\label{sec:deconv}
Deconvolution is a popular technique in the processing of images obtained using optics in fields such as microscopy and astronomy. As the name suggests, it is the opposite of convolution - where two functions are combined to produce a third function. Convolution is defined as the integral of two functions, where one has been reversed and then shifted. Deconvolution attempts to separate the two functions, recovering the underlying signals. (the convolution of function $f$ with $g$ is defined in Chapter \ref{chapter:introduction}  - Equation \ref{eq:convolution}).

Any optical system with a finite aperture will produce distortion, due in large part to diffraction. Recall from Chapter \ref{chapter:introduction} that an optical system's response to detecting a point of light is described using a \emph{point spread function}(section \ref{sec:intro_psf}). Such effects are undesirable and significantly affects any attempt by HOLLy to recover the underlying structure.

Recall that the \emph{C. elegans} data-set is comprised of a series of 3D images (or stacks), taken by moving the microscope stage along the Z-axis. As the worm is semi-transparent (a useful feature in its study), light from the neurons at a particular Z depth will transmit through to other Z layers, spreading outwards, the further from the source. If we rotate the the stack, viewing it from multiple angles, the out-of-focus of light can be clearly seen - figure \ref{img:worm_cones}.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worm_vid_cones.png}
\caption{Two images taken from video \ref{appendix:video1} showing a \emph{C. elegans} image stack being rotated. In the left-hand frame, the neurons are in similar orientation to the original, with the out-of-focus light inline with the Z axis. As the stack is rotated away from this view (the right-hand image), the \emph{cones} of light can clearly be seen (as well as a number of artefacts due to the different accuracy in the Z axis). }
\label{img:worm_cones}
\end{figure}

Deconvolution attempts to remove this light by modelling the real PSF as closely as possible ($g$), using a particular algorithm to recover the \emph{underlying} function ($f$). We can say that the true image ($f$) has been \emph{convolved} by the PSF ($g$) giving our final image $h$. If $g$ is known, there are a number of algorithms that attempt to recover $f$ from $h$.

The Richardson-Lucy algorithm - discovered independently by William Richardson in 1972, and Leon Lucy in 1974 - is defined by equation \ref{eq:richardsonlucy5}. It is an iterative process that converges on the maximum likelihood solution for the the underlying signal. 

A point-source of light, its distortion described by a PSF, can be written as follows:
\begin{equation} \label{eq:richardsonlucy1}
 d_{i} = \sum_{j} p_{i,j} u_{j}\,
\end{equation}
where $u_{j}$ is the underlying intensity at a particular pixel $j$, whereas $d_i$ is the detected intensity at pixel $i$. The PSF is represented by $p_{i,j}$, defining the relationship between the two pixel positions. If we assume that our microscope is \emph{shift invariant} (i.e the time or location an observation was taken does not affect the response of the imaging system), the PSF $p$ can be described as:

\begin{equation} \label{eq:richardsonlucy2}
 p_{i,j} = P(i-j)
\end{equation}

i.e dependent only on the distance between pixel $i$ and $j$ - a convolution. To approach the real signal $u_{j}$, given our observation $d_{i}$, we can produce an estimate - $\hat{u}_j^{(t)}$ - iterating and improving the estimate (at each step $t$).

\begin{equation} \label{eq:richardsonlucy3}
\hat{u}_{j}^{(t+1)} = \hat{u}_j^{(t)}  \sum_{i} \frac{d_{i}}{c_{i}}p_{ij}
\end{equation}

where
\begin{equation} \label{eq:richardsonlucy4}
c_{i} = \sum_{j} p_{ij} \hat{u}_{j}^{(t)}
\end{equation}

Written using the convolution operator, the final algorithm is defined as follows:
\begin{equation} \label{eq:richardsonlucy5}
\hat{u}^{(t+1)} = \hat{u}^{(t)}\cdot\left(\frac{d}{\hat{u}^{(t)}\otimes P}\otimes P^*\right)
\end{equation}

where $P^*$ is the \gls{PSF}, flipped in each dimension. The \gls{PSF} is typically represented as an image, smaller than the input and is referred to as the \emph{convolution kernel} (or just the \emph{kernel}).

The number of iterations is determined by the user. As Richardson-Lucy tends to amplify noise, the optimum number of iterations should be less than the number required for convergence, stopping before the noise dominates the result. Recall from section \ref{sec:wormnoise} that certain areas that are not the four neuron bodies also fluoresce and while the intensity is less than the areas of interest, it is high when compared to the background and would therefore be amplified by the deconvolution process.

\subsection{PSF estimation}
The \gls{PSF} can be modelled if various parameters of the microscope setup are known. A number of algorithms perform \emph{blind deconvolution}, where the convolution kernel is automatically estimated. Such approaches either draw a \gls{PSF} from a dictionary, or use an \lq optically motivated\rq\ paramaterisation of the \gls{PSF} - parameters that can be optimised as the algorithm progresses \citep{sageDeconvolutionLab2OpensourceSoftware2017}.  

Several \gls{PSF} models exist that cover different imaging modalities. A plugin for the program ImageJ - \emph{PSF Generator}\footnote{Available from EPFL - \url{http://bigwww.epfl.ch/algorithms/psfgenerator/\#download}} - was used to create a 3D PSF that closely models the experimental conditions used in the creation of our \emph{C. elegans} dataset (the parameters governing the generation of the PSF can be found in Appendix \ref{appendix:psf_params}). 
Figure \ref{img:psf3d} shows the 3D PSF we have chosen from 3 viewpoints. It is broadly the shape of two cones, 64 x 64 x 16 pixels in the X, Y and Z dimensions respectively. 

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/psf.png}
\caption{The PSF Kernel generated by \emph{PSF Generator} plugin inside the program \emph{ImageJ} - views of the XZ and XY planes respectively. The values range from 0 (black), through purple and orange to 1.0 (white) at the central voxel. The red bars in the bottom left corners are 30\si{\micro\metre} tall (Z axis) and long (X and Y axes).}
\label{img:psf3d}
\end{figure}

The Lucy-Richardson algorithm, combined with this PSF was used to process the entire dataset after both \emph{region of interest} cropping and background subtraction. Lucy-Richardson requires a number of iterations, set by the user. More iterations can increase the detail but may also lead to noise becoming magnified. Figure \ref{img:psf_examples} shows the effects of no deconvolution, 5 iterations and 20 iterations respectively. After 5 iterations, much of the out-of-focus light has been removed. After 20 iterations, the 4 neurons are very bright but a small particle to their left has been exaggerated along with a number of particles on the far left that are part of the dendrites leading away.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/psf_examples.png}
\caption{Three versions of the same image from the \emph{C.elegans} dataset. Each is a summed projection of 50 image stack, 200 by 200 pixels, after cropping to the \gls{ROI}. The first image on the left has no deconvolution applied. The second has 5 iterations of deconvolution, while the last on the right has 20.}
\label{img:psf_examples}
\end{figure}


\subsection{Fourier domain deconvolution}
A naive approach to computing a deconvolution would be to integrate over the product of every pixel in the input image with every pixel of the kernel. The complexity of such an operation is $O(N^2)$ when the kernel is the same size as the input image. Such an algorithm is trivial to parallelise - any one pixel in the output does not depend on any other result. Using multi-threading on modern processors, or CUDA based solutions on modern GPUs can increase the speed considerably. Despite such engineering solutions, our \emph{C. elegans} dataset consists of the order of 10 million pixels. Typical convolution kernels for such images may contain 4 million pixels, resulting in \num{8e13} floating point operations. For context, a modern processor might conservatively perform \num{6.4e10} \gls{FLOPS} - such a convolution would take several minutes. Deconvolving a large dataset quickly becomes unfeasible for all but the largest computers.

Fortunately, another method exists that takes advantage of the fact that our convolution kernel (our PSF) is circular and shift-invariant. One can perform the convolution in Fourier space using an element-wise multiplication \citep{sageDeconvolutionLab2OpensourceSoftware2017}. The complexity of the algorithm is now $O(N)$ - the practical speed is dependent on the speed of the Fourier Transform and its inverse. Fortunately, several libraries exist that can perform fast Fourier Transforms, reducing the algorithm time to a few seconds, even with large kernels. This is the approach taken by \emph{DeconvolutionLab2} - a popular Image-J plugin - and the approach we adopt in this work. The limitation is the PSF must be be centred over the image in Fourier space and padded at the border to fit.

\subsubsection{Other approaches to deconvolution.}

A number of alternative algorithms to Richardson-Lucy exist. A regularisation term can be added to Richardson-Lucy to reduce the tendency of Richardson-Lucy to amplify noise \citep{deyRichardsonLucyAlgorithm2006}.

Naive inverse filtering is one of the simplest approaches, minimising the least-squares cost function - a function that measures the difference between the observed image and an estimate of the image, convolved with a known PSF. Such an approach is parameter free, but tends to amplify noise, producing \say{high-frequency oscillations} \citep{sageDeconvolutionLab2OpensourceSoftware2017}. Tikhonov regularisation may be added to reduce the noise amplification.

The Landweber algorithm minimises least-squares like the previous method, but uses an iterative, gradient descent approach \citep{landweberIterationFormulaFredholm1951}. 

\subsection{Cropping}
\label{sec:cropping}
Common to many of the dataset processing pipelines we used is finding the \emph{Region of Interest}(\gls{ROI}). The images taken are wider than they are tall; the worm is drawn into view using a vacuum, aligned with the camera along its medial axis (from head to tail), with the mouth being towards the left side of the image (and therefore ASI is often closer to the left-side of the image). Images where the worm was not in this configuration were already removed from the dataset, prior to our experiments (this forms a bias in the dataset which we will revisit in section \ref{sec:augmentation}).

The \emph{C. elegans} images cover a large part of the \emph{head} of the animal with either a more anterior section (the pharynx) or a more anterior section towards the mid-gut, depending on position of the animal when it was imaged. In order to save memory and processing time - and possibly to focus the network on the salient parts of the image - we automatically crop the images to a particular size. Using the mask, a sliding window is moved over the image until either the entirety or majority of the mask is within this window. If several solutions are available, the one with the neurons most centred within the view is chosen.

\subsection{Augmentation}
\label{sec:augmentation}
Recall from Chapter \ref{chapter:holly} that augmentation refers to increasing the number of training examples through some form of transformation; a common example with image-based datasets is to rotate each image through the 4 cardinal directions. By rotating 3 times by 90, 180 and 270 degrees, artefacts in the final image are avoided

The \emph{C. elegans} dataset consists of 3D images or volumes, therefore it is possible to rotate the volume around all three axes, in order to increase the dataset size considerably. However, there is one significant problem with this approach - the anisotropic resolution of the volume. Recall that the distance between the layers is 2 microns, whereas the pixels in each plane are 0.3223 microns square (a factor of 6.2).

Any arbitrary rotation that isn't exactly 90, 180 or 270 degrees will produce artefacts. However, in 3D when the Z resolution is lower than the X-Y plane, any rotation not around the Z axis (i.e  not aligned with the camera viewpoint) will result in considerable artefacts. Nevertheless, we attempted to increase the number of views of each datum as HOLLy's predictions suffer considerably if the dataset is biased towards a small number of viewpoints.

\clearpage

The augmentation process consists of the following steps:

\begin{enumerate}
	\item Find a square region of interest (\gls{ROI}).
	\item Increase the size of the ROI by a factor of 1.42.
	\item Create a \emph{sampler cube} with the same dimension as the larger ROI, stretching the Z-Axis.
	\item Rotate the co-ordinates of our original ROI.
	\item Sample the sampler cube with the new co-ordinates.
	\item Shrink the resulting image in the Z-axis.
	\item Save the new image.
\end{enumerate}

The ROI is increased so no area in the final image is blank. Rotating a point not at the origin through all possible angles in SO(3) effectively traces a sphere which does not map to the cuboid volume of our image. Therefore we must sub-sample our ROI cube by increasing its size temporarily during the sampling process. 

The \emph{sampler cube} is a cubic sub-region of the original image, however the samples in the Z axis are scaled by a factor of 6.2, effectively stretching the volume in the Z axis to match the X and Y dimensions. A choice between interpolation and nearest-neighbour sampling must be made here by the user. If interpolation is enabled, trilinear filtering is also enabled in the final step - resizing the augmented image in the Z axis. Otherwise, the final Z axis scaling also uses nearest neighbour sampling. Nearest neighbour sampling attempts to avoid any smoothing of the data, but this leads to large artefacts. Figure \ref{img:inter_vs_nointer} shows the differences between interpolation and nearest neighbour sampling. Banding artefacts are larger in size and value with nearest neighbour sampling. Interpolated images still show some banding, but on a smaller scale, giving an overall smoother appearance.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/inter_vs_nointer.png}
\caption{Examples of interpolation against nearest neighbour sampling. The top row shows three images from an interpolated augmented stack, where the neurons have been rotated. The bottom row shows the same images but with no interpolation applied. }
\label{img:inter_vs_nointer}
\end{figure}

The pixel co-ordinates of the new image are rotated with a random quaternion to find a new set of co-ordinates with which to sample the sampler cube. 27 weighted samples of the sampler cube are combined to form the new pixel (all the neighbours of the new pixel). Finally, the resulting volume is scaled down by 6.2 in the Z axis, to match the input data. Only the source images are interpolated or sub-sampled - the masks are always sampled using the nearest neighbour to the transformed coordinate as intermediate values are not permissible in the mask volumes.

Our augmentation is highly dependent on out-of-focus light removal. Such light forms a conic shape aligned with the viewing axis, which happens to also be the Z axis. After rotation, the Z axis is no longer aligned with the view axis - any out-of-focus light is also rotated resulting in many \emph{side-on} views of these conic volumes of light. This is not an accurate model of the microscope system - any such light not removed by deconvolution (or other methods) will contribute to incorrect results, particularly with the HOLLy approach.

\subsection{Derived datasets}
It is unclear which of the dataset processing methods will result in the best performance when attempting to label the four neurons. Therefore, different combinations of processing were used to create derived datasets. The following operations were performed in a number of combinations, which are stated for each experiment. 

\begin{enumerate}
    \item Shrinking the volumes / images.
    \item Reducing to a 2D image through a \emph{sum projection}.
    \item Cropping to a region of interest as the original images contain more \emph{empty space} than neurons of interest.
    \item Background subtraction, either automatically per image, or using a fixed value across the entire dataset.
    \item Deconvolution using the Richardson-Lucy algorithm and a generated PSF kernel.
	\item Augmenting the data through 3D rotations and interpolations.
\end{enumerate}

Some datasets were more specialised and contained additional files, such as the centroid data in the \emph{graph based} experiments discussed in section \ref{sec:graphbased}. 

All datasets were converted to the \gls{FITS} format. Source images were paired with their derived masks. All operations were performed by the program \emph{wiggle}(appendix \ref{appendix:code}).

The specific datasets and the operations performed in order to generate them can be found in appendix \ref{appendix:celegans}.

\clearpage
\section{U-Net}
\label{sec:unet}
U-Net is the name given to a particular neural network architecture, created by \cite{ronnebergerUNetConvolutionalNetworks2015c}, developed especially for biomedical image segmentation. The name derives from the shape of the diagram used to describe the network, shown in figure \ref{img:unet}. The network consists of several levels, each containing a number of convolutional layers in a \emph{down-sampling} stage (also called the \emph{analysis path}), with a corresponding \emph{up-sampling} stage (also known as the \emph{synthesis path}. The pair of stages on a particular level are joined by a concatenation step.

An image of a particular size (572 by 572 pixels in figure \ref{img:unet}) enters the U-net at the top left. It passes through a number of convolutional layers, increasing the number of filters. The tensor finally passes through a \emph{MaxPool} layer, down-sampling the resulting tensor. The process begins again, one layer down, with smaller primary dimensions but more filters. After a number of layers (5 in the case of figure \ref{img:unet}), the process is reversed using an \emph{up-sampling} operation (typically bi-linear or tri-linear filtering depending on the number of dimensions in the input).

After the tensor has been up-sampled, but \emph{before} the subsequent convolutional layers, it is concatenated with the tensor from the corresponding stage. This new tensor is then passed through a number of convolutional layers that perform the opposite operation of reducing the number of filters. When the top layer is reached, the final tensor dimensions will match that of the original input image, but with a larger final dimension equal to the number of classes being predicted.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/u-net.png}
\caption{The U-Net architecture. The process starts from the top-left, descending to the bottom of the image before rising again, forming a \lq U\rq\ shape. The descending steps perform a number of convolutions and \emph{down-sampling} reducing the image size. Eventually, a \emph{latent representation} is derived at the lowest level. From here, the representation is \emph{up-sampled} to create a new image of original dimensions. Image taken from \cite{ronnebergerUNetConvolutionalNetworks2015c}}
\label{img:unet}
\end{figure}

The two key features of U-Net are the concatenation steps (or \emph{cross-links}) between the corresponding levels, and the convolution steps on the up-sampling side. Combined, they have the effect of applying the learned, latent representation to the original images, providing a more precise output. Unlike many neural network architectures (including HOLLy), U-Net does not contain any \emph{fully-connected} layers.

The output from U-Net consists of tensor with the same dimensions as the input but a larger final dimension that matches the number of classes being predicted. Probabilities for each class are derived for every pixel. The highest probability is chosen for the final result, though all probabilities can (and are) considered when deriving the loss.

U-Net can be applied to 3D input as well as 2D input. \citet{cicek3DUNetLearning2016a} show that a 3D U-Net can perform volumetric segmentation on a biological dataset: \emph{Xenopus Kidney}. While this dataset is very different to our \emph{C. elegans} case, it shares one key characteristic - \emph{sparsity}. Much of the volume is either empty, or not important to the final analysis. In order to cope with this sparsity, the authors suggest a weighted loss function, where the contribution of the background miss-classifications are significantly reduced.

\subsection{Cross-entropy, Tversky \& Dice Losses}

The choice of loss function is of crucial importance to any machine learning approach. Recall in HOLLy (Chapter \ref{chapter:holly}) we employed the integrated, L1 Loss directly on the pixels produced by the network; the difference between the pixels is continuous. In a segmentation task however, each pixel (or voxel in the 3D case) belongs to one and only one \emph{class} from a number of classes. In our problem case, we have either three or five classes that a pixel can belong to: background, ASI and ASJ (the latter two can be further subdivided into left and right).

In a classification task, the network produces a set of probabilities for each datum - how likely is it to be a member of this class or another. This vector of probabilities can be compared to a ground-truth vector and a loss generated using a particular loss function.

One loss function in common use is the Cross Entropy Loss, defined in equation \ref{eq:crossentropy}\footnote{Taken from the PyTorch implementation - \url{https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html}}, where $x$ is the output, $y$ is the ground-truth, $w$ is the weight, $C$ is the number of classes and $N$ spans the minibatch. 

\begin{equation}
L = \{ l_1,....,l_N\}^T, l_n = - w_{y_n} \log \frac{\text{exp}(x_{n,y_n)}}{\sum_{i=1}^{C} \text{exp}(x_{n,i})} 
\label{eq:crossentropy}
\end{equation}

In image segmentation tasks, a number of additional loss functions are commonly used. The Dice loss originates from SÃ¸rensenâ��Dice coefficient, developed independently by botanists Thorvald SÃ¸rensen and Lee Raymond Dice, and gauges the similarity between two samples. The paper by \citet{milletariVNetFullyConvolutional2016a} introduces the Dice loss to deep-learning and computer vision. The original coefficient is defined in equation \ref{eq:dice}.

\begin{equation} \label{eq:dice}
\text{DSC} = \frac{2|X \cap Y|}{|X| + |Y|}  
\end{equation}

To create a loss function for a classification problem with multiple classes, several approaches can be taken. Firstly, the different classes can be ignored, generalising the approach. Another approach is to compute the coefficient for each class separately and combine them with either a mean average or sum operation.

Another popular loss function used in segmentation problems is the Tversky Loss. Described by \citet{salehiTverskyLossFunction2017a}, this loss is an attempt to address the problem of imbalanced data. The authors state this is a particular problem in medical imaging segmentation, where the pixels of interest are greatly outnumbered by these which are not.

The Tversky loss is defined in equation \ref{eq:tversky} is similar to the Dice Coefficient - indeed it is identical if $\alpha$ and $\beta$ are both $0.5$. In this equation, P is the predicted set and G the ground-truth.

\begin{equation} \label{eq:tversky}
S(P,G;\alpha,\beta) = \frac{|PG|}{|PG| + \alpha|P \ G| + \beta|G \ P|}  
\end{equation}

By altering the $\alpha$ and $\beta$ parameters, one can control how much emphasis is placed on false positives versus false negatives. \citet{salehiTverskyLossFunction2017a} show that a higher $\beta$ leads to a higher emphasis on false negatives, improving the specificity and recall of the network, and an improvement on the generalisability.

\subsection{Our approach}
Our first approach to automatic labelling of the \emph{C. elegans} neurons ASI and ASJ, is to apply a similar version of the 3D U-Net described by \cite{cicek3DUNetLearning2016a}. Our network is slightly smaller, due to hardware limitations, containing 3 layers. The final number of filters is 256 at the lowest level.

We started with 3D rather than a 2D as the neurons themselves overlap when projected. Initial attempts at a 2D approach were abandoned when it was clear that the resulting masks bore little resemblance to the real masks.

The loss function is a combination of the cross-entropy loss with weights and the Dice Loss. The Dice Loss is computed for each class separately and a mean average taken. Three categories are created: ASI, ASJ and background. The background has a weight of 0.01, whereas ASI and ASJ have a weight of 1.0 each.

\clearpage

\subsection{Evaluation}

Experiment worms-2021-10-08 ran for 20 epochs on a training dataset consisting of 2800 volumes. In order to fit these 3D images into the hardware memory available, the originals were scaled by half in each dimension to 320 x 150 x 25 pixels (width, height and depth) (the original volumes are 51 slices tall so some interpolation takes place when reducing to 25). A single channel, 32 bit float represents the light intensity at each pixel. The images are normalised by dividing by the maximum possible value of 4096. No further processing of the input images took place. Figure \ref{img:worms_2021_10_08_res} shows an example from the test set once training completed. This experiment attempts to predict all 4 neurons (shown in shades of grey in the masks).

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worms_2021_10_08_result.png}
\caption{The input image (left), true mask (centre) and the predicted mask (right) for experiment worms-2021-10-08. The top three images show the X-Y plane with a maximum intensity projection for clarity.The bottom row of images show the corresponding X-Z plane views and have been stretched to match the scale of the X-Y plane (0.3225 microns per pixel).}
\label{img:worms_2021_10_08_res}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worms_2022_09_02_result.png}
\caption{An example input image (left), target mask (centre) and the predicted mask (right) for experiment worms-2022-09-02 from the test set. The first image is a maximum intensity projection from a 3D stack. The target and predicted mask images also use a maximum intensity projection for clarity - classes with higher numbers are chosen when overlap occurs. The predicted mask is lower resolution and has been scaled upwards for clarity.}
\label{img:worms_2022_09_02_res}
\end{figure}

\clearpage

The initial masks were encouraging - experiment worms-2022-09-02 looked in more detail at the masks being produced. Figure \ref{img:worms_2022_09_02_res} shows a typical result from the network. A predicted mask is produced from the input data. The central and right-most images in figure \ref{img:worms_2022_09_02_res} show the original and predicted masks respectively, reduced to two dimensions (with the ASJ neurons having preference when two neurons overlap for clarity). The predicted mask shows some ambiguity within each pair of neurons, with the lower, darker area containing elements of ASI-1 and ASI-2. The same is true for ASJ, with the larger areas towards the top right being marked as both ASJ-1 and ASJ-2. 

The output from our network is a 3D mask for each class. This can be measured against the human-created ground-truth using the Jaccard index (also known as the Jaccard similarity coefficient)\citep{jaccardDistributionFloraAlpine1912}. Developed by Paul Jaccard (and independently by T. Tanimoto), this index compares how similar two sets are by comparing their intersection with their union (Equation \ref{eq:jaccard}). Intuitively, the Jaccard Index measures the overlap of the two masks with areas that overlap increasing the score, but any areas of either mask that are not overlapping reduces the score. This prevents high Jaccard scores for a large set that cover the entire image.

\begin{equation} \label{eq:jaccard}
J(A,B) = \frac{|A \cap B|}{|A \cup B|}  
\end{equation}

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|}
    \hline
    Neuron & Mean Jaccard Score & Std. Dev. \\
    \hline
    ASI-1 & 0.215 & 0.18\\
    ASI-2 & 0.32 & 0.233\\
    ASJ-1 & 0.438 & 0.234\\
    ASJ-2 & 0.374 & 0.268\\
    Combined & 0.721 & 0.055\\
    \hline
\end{tabular}
\caption{The Jaccard Scores for Experiment worms-2022-09-02.}
\label{table:jacc}
\end{table}

Table \ref{table:jacc} lists the mean Jaccard indices, over 100 items and the standard deviation for each  neuron and all the neurons combined. Prediction of ASI is quite poor, with ASJ only slightly more accurate. However, when the neurons are combined (effectively reducing the problem down to two classes - background or neuron) the scores increase dramatically. This is in accordance with the various test and training images - the general location of neurons and their areas is well predicted but differentiating between neurons is more difficult (as seen in Figure \ref{img:worms_2022_09_02_res}).

The test set of 100 images was compared against the fluorescence scores provided with the dataset. These original fluorescence scores are derived by a human in conjunction with the \emph{Neuroshed} program mentioned in section \ref{sec:annotations}. The fluorescence is derived by integrating the raw values after masking. No subtraction of background, or any other adjustment to the raw values was made. The ultimate goal is to count the fluorescence of each neuron - the mask prediction is a step towards that end. Therefore, we took our mask predictions, integrated the areas masked in the original images and compared the scores. Figure \ref{img:worms_2022_09_02_lumo} shows four plots - one for each neuron.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/worms_2022_09_02_lumo.png}
\caption{Plots of the original and predicted fluorescence counts for each neuron, for the 100 items of the test set (from experiment 2022-09-02}
\label{img:worms_2022_09_02_lumo}
\end{figure}

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neuron & Og. Mean Volume & Og. Std. Dev. & Pred. Mean Volume & Pred. Std. Dev.\\
    \hline
    ASI-1 & 10302.86 & 2108.23 & 15791.57 & 4762.35\\
    ASI-2 & 9917.75 & 1991.99 & 13966.67 & 5301.77\\
    ASJ-1 & 11956.59 & 2072.53 & 12369.14 & 556.17\\
    ASJ-2 & 11823.89 & 2988.19 & 8827.57 & 3796.34\\
    \hline
\end{tabular}
\caption{The mean and standard deviations of the area of the masks for Experiment worms-2022-09-02.}
\label{table:worms_2022_09_02_areas}
\end{table}

In almost every individual, for each neuron with the exception of ASJ-2, the predicted scores are higher than the original scores. This is due - in part - to the predicted volumes being somewhat larger than the original ones. Table \ref{table:worms_2022_09_02_areas} lists the original and predicted areas. As we will see later, the lower scores are also due to the particularities of the program used to create the original scores.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worms_2022_09_02_pred.png}
\caption{A slice from a prediction of our U-Net, attempting to predict the four classes. Each class is a different shade of grey. While the overall shape of the areas combined are sensible, reflecting the masks in the data, the individual classes are poorly predicted (from experiment worms-2022-09-02). }
\label{img:worms_2022_09_02_pred}
\end{figure}

Figure \ref{img:worms_2022_09_02_pred} shows one of the predictions from experiment worms-2022-09-02. The image is one slice from the volume, chosen to best illustrate a common problem - the masks themselves are not homogeneous. One of the centre areas shows a mix of both ASI and ASJ, while bottom-most area has pixels of two different classes on its periphery.

Recall that the original scores themselves may not be completely accurate (see section \ref{sec:annotations}). It is entirely possible that a U-Net might indeed \emph{out-perform} the original method - by increasing the areas of the masks slightly, are the network results more representative of the real fluorescence? If this is indeed the case, we would expect to see a similar correlation in the scores. Table \ref{table:wormcor} presents the Spearman's rank correlation coefficient and Pearson's correlation for each neuron prediction against the integrated intensity, computed from the  original masks from the dataset. In addition, we combined both pairs into single classes (so ASI-1 and ASI-2 become ASI-combined) and derived a score. Finally, all neuron classes were combined, leaving only two classes - neuron and background. The combined scores show much higher correlation than the separated four scores.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neuron & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI-1 & 0.277 & 0.005 & 0.31 & 0.002 \\
    ASI-2 & 0.329 & 0.001 & 0.365 & \num{2e-04}\\ 
    ASJ-1 & 0.299 & 0.003 & 0.329 & \num{8e-04}\\
    ASJ-2 & 0.316 & 0.001 & 0.292 & 0.003 \\
    Combined ASI & 0.616 & \num{9.107e-12} & 0.663 & \num{5.47e-14}\\
    Combined ASJ & 0.706 & \num{2.407e-16} & 0.682 & \num{5.753e-15}\\
    Combined Total & 0.74 & \num{1.41e-18} & 0.776 & \num{2.394e-21}\\
    \hline
\end{tabular}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-09-02. The coefficients are computed over the test set of 100 items.}
\label{table:wormcor}
\end{table}

\subsubsection{Three class predictions}

The two coefficients support the idea that ASI and ASJ are detected correctly, but some ambiguity exists between left and right neurons (or 1 and 2 more correctly). ASI correlation is somewhat weaker than ASJ. Both combined gives the highest score. These results suggest that training a U-Net to predict only 3 classes, ASI, ASJ and background may be more accurate (and still useful from a biological experimentation perspective). Experiment worms-2022-09-15 predicts three classes: background, ASI and ASJ. Table \ref{table:worms-2022-09-15} shows the correlation between the predicted fluorescence and the fluorescence derived from the original masks. The correlations are similar to the previous experiment.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neurons & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI & 0.623 & \num{1.768e-14} & 0.619 & \num{6.456e-12}\\
    ASJ & 0.597 & \num{5.659e-11} & 0.646 & \num{1.435e-19} \\
    \hline
\end{tabular}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-09-15, computed over the test set of 100 items.}
\label{table:worms-2022-09-15}
\end{table}

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    ASI & 0.241 & 0.863 & 0.712 & 0.741 & 0.113\\
    ASJ & 0.309 & 0.878 & 0.742 & 0.765 & 0.099\\
    Combined & 0.545 & 0.863 & 0.754 & 0.765 & 0.060\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-09-15, computed over the test set of 100 items.}
\label{table:wormz_2022_09_15_jack}
\end{table}

The output images are smaller than the original images by a factor of two in each dimension. As the depth dimension is an odd number, one of the images of the stack must be removed (the last one in our case) or an additional one inserted in the input data to ensure a more accurate scaling. Interpolation will occur (specifically \emph{spline interpolation}\footnote{SciPy's Zoom function specifically \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html}}), making recovery of the original scaled image impossible without some loss. The input data must be scaled down before it can be used. 

Scaling is one technique we can use to fit our model inside the memory constraints, but as mentioned in section \ref{sec:cropping}, input images can be cropped to an area that contains the relevant information. Experiment worms-2022-09-19 builds on the previous experiment by keeping the same resolution but working with images with dimensions 200 pixels in the X and Y dimensions, and 51 pixels in the Z axis. Rather than scale the entire image, we crop the image to a region of interest. Figure \ref{img:worms_2022_09_19_cor} plots the computed fluorescence scores against the reported fluorescence scores. Again, the predicted scores are slightly larger than the reported scores. Table \ref{table:worms_2022_09_19_cor} presents the correlation scores for ASI, ASJ and both combined. ASJ is more closely correlated than ASI as before.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/worms_2022_09_19_cor2.png}
\caption{Plots of the original and predicted fluorescence counts for each neuron, for the 100 items of the test set.}
\label{img:worms_2022_09_19_cor}
\end{figure}

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neurons & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI & 0.516 & \num{3.750e-08} & 0.491 & \num{1.248e-09}\\
    ASJ & 0.543 & \num{5.245e-09} & 0.671 & \num{1.835e-14}\\
    \hline
\end{tabular}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-09-19, computed over the test set of 100 items.}
\label{table:worms_2022_09_19_cor}
\end{table}

Table \ref{table:wormz_2022_09_19_jack} lists the summary statistics of the Jaccard indices, computed over the test set. The mean and median scores are quite high and similar, with a low standard deviation. This suggests the majority of the masks are well realised. ASJ outperforms ASI slightly, with the combined neuron masks scoring highest.

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    ASI & 0.188 & 0.845 & 0.68 & 0.711 & 0.114\\
    ASJ & 0.232 & 0.866 & 0.71 & 0.739 & 0.114\\
    Combined & 0.521 & 0.823 & 0.727 & 0.736 & 0.056\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-09-19, computed over the test set of 100 items.}
\label{table:wormz_2022_09_19_jack}
\end{table}

Image \ref{img:03725_unet} shows an example of a \emph{good} prediction (a high Jaccard score of 0.75) from the test set of experiment 2022-09-19. The original mask has a central ASI area (in dark grey) with a straight-edge border that is partially reproduced in the prediction. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/03725_unet.png}
\caption{An example of a good prediction (Image 03725, Jaccard score 0.75) from experiment 2022-09-19. Each image is a sum projection of the volume. From left to right: the input source image, the original mask and the predicted mask.}
\label{img:03725_unet}
\end{figure}

Both the Jaccard indices and the correlation between the integrated light intensities are slightly lower than the previous experiment.  Resizing the images in experiment worms-2022-09-15 has the effect of removing high-frequency detail, which might have resulted in certain values being lost. It is also possible that the small size of the test set, relative to the training set (100 items and 2600 items respectively) might also have contributed to the difference in metrics.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neurons & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI & 0.47179 & \num{2.20812e-32} & 0.457981 & \num{2.19567e-30}\\
    ASJ & 0.543 & \num{1.99382e-51} & 0.54614 & \num{7.42916e-45}\\
    \hline
\end{tabular}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-10-26, computed over the test set of 560 items.}
\label{table:worms_2022_10_26_cor}
\end{table}

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    ASI & 0.139991 & 0.883145 & 0.681854 & 0.710225 & 0.122912\\
    ASJ & 0.258745 & 0.909275 & 0.706611 & 0.724054 & 0.0995884\\
    Combined & 0.487126 & 0.882564 & 0.726766 & 0.737352 & 0.0644865\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-09-19, computed over the test set of 100 items.}
\label{table:wormz_2022_10_26_jack}
\end{table}

A larger test set, with a correspondingly smaller training set was tested in experiment worms-2022-10-26. The training set consisted of 2240 items, with 560 in the test set. Table \ref{table:worms_2022_10_26_cor} shows a slight decrease in the correlations between the integrated intensities between the original and predicted masks. The Jaccard indices, shown in table \ref{table:wormz_2022_10_26_jack} show very similar mean and median scores, though the minimum scores are lower. While this test set would be more representative of performance, the corresponding reduction in an already small training set will hamper learning. Nevertheless, the difference in the Jaccard scores suggest that performance has not dropped significantly. The number of examples with Jaccard scores lower than 0.5 is 46 and 27 for ASI and ASJ respectively - $8.2\%$ and $4.8\%$ of the test set. This is comparable with $7\%$ and $6\%$ in experiment worms-2022-09-19.

Recall from section \ref{sec:worm_background}, we can calculate the background value for each image. We can subtract this value from image before we integrate the intensity underneath the original and predicted masks. Table \ref{table:worms_2022_09_19_cor3} lists the correlations computed over the test set for experiment worms-2022-09-19. Table \ref{table:worms_2022_10_26_cor} shows the correlations over the larger test set from experiment   worms-2022-10-26.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neurons & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI & 0.757 & \num{8.900e-20} & 0.786 & \num{3.066e-22}\\
    ASJ & 0.787 & \num{2.710e-22} & 0.872 & \num{3.150e-32}\\
    \hline
\end{tabular}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-09-19, computed over the test set of 100 items. The background for each image has been subtracted.}
\label{table:worms_2022_09_19_cor3}

\end{table}

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Neurons & Spearman & P-Value & Pearson & P-Value \\
    \hline
    ASI & 0.738724 & \num{1.13364e-97} & 0.712097 & \num{9.10449e-88}\\
    ASJ & 0.825541 & \num{9.37714e-141 } & 0.801211 & \num{1.50695e-126}\\
    \hline
\end{tabular}
\label{table:worms_2022_10_26_cor3}
\caption{The Pearson and Spearman correlation coefficients and associated p-values for experiment worms-2022-10-26, computed over the test set of 560 items. The background for each image has been subtracted.}
\end{table}

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/worms_2022_09_19_cor3.png}
\caption{Plots of the original and predicted fluorescence counts for each neuron, for the 100 items of the test set, in experiment worms-2022-09-19. The background for each image has been subtracted. The original and predicted counts are well correlated for both ASI and ASJ.}
\label{img:worms_2022_09_19_cor3}
\end{figure}

The correlations have improved significantly in both experiments, in particular with ASI. This suggests that the predicted masks are including more voxels with values closer to background. Figures \ref{img:asi_pred_base_sig} and \ref{img:asj_pred_base_sig} suggest that the difference between the intensity scores between predicted and original masks tails off significantly around the intensity value of approximately 480, but that there is a significant difference near the 350 value. In all measures, ASI prediction performs worse than ASJ. Recall from section \ref{sec:celegansdata} that ASI is generally less bright than ASJ and therefore closer to the background.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/asi_pred_base_sig.png}
\caption{A histogram of the intensity values underneath the predicted and provided masks for ASI, from experiment worms-2022-09-19.}
\label{img:asi_pred_base_sig}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/asj_pred_base_sig.png}
\caption{A histogram of the intensity values underneath the predicted and provided masks for ASJ, from experiment worms-2022-09-19.}
\label{img:asj_pred_base_sig}
\end{figure}

The predicted areas are larger than the original areas - means of 1.32 and 1.26 times for ASI and ASJ respectively (experiment worms-2022-09-19). Much of this additional area consists of false positives - areas deemed to be part of a neuron by U-Net, but not in the original masks. False positive areas account for $29.63\%$ and $26.02\%$ of the total predicted areas for ASI and ASJ respectively (mean averages across the test dataset). False negatives - these areas missed by the prediction - account for only $5.0\%$ and $4.42\%$. If we look at the intensity scores of these regions, the false positive areas have a median of 367 and 362 (ASI and ASJ.  99.18 and 77.76 std-dev.), compared with medians of 391 and 406 (153.38 and 203.33 std-dev.) for the original regions. This suggests that U-Net might be choosing a lower \emph{cut-off} for the regions it selects for each neuron.

We can analyse this \emph{border region} by looking at the pixels immediately next to the regions chosen by \emph{Neuroshed} and U-Net. In the former, the median scores at the border were 349 and 353 for ASI and ASJ respectively (72.71 and  68.82 std-dev), compared to 344 and 346 (66.77 and 60.67 std-dev). The predicted border pixels are not significantly different in their average intensity from the originals. This suggests there is an area of light at the edges of the masks with similar values. A larger border, bounding a larger area could be drawn with no large difference in its average intensity.

Figures \ref{img:asi_pred_base_sig} and \ref{img:asj_pred_base_sig} show the values found underneath the provided and predicted masks over the test set for experiment worms-2022-09-19, for ASI and ASJ respectively. Recall from section \ref{sec:worm_background}, that an intensity value of 291 or above (or 303 if one considers light intensity values instead of counts) lies in the $95^{th}$ percentile of all scores across the entire \emph{C. elegans} dataset. In both the ASI and ASJ results, the predicted counts are higher at the lower values, particularly around the range of approximately 310 to 390. Of the scores in the provided mask, $0.54\%$ and $0.81\%$ are below the 291 significance threshold for ASI and ASJ respectively. The predicted masks are slightly larger, with $1.21\%$ and $1.56\%$ for ASI and ASJ. 

While the correlations are greatly improved, there are a number of outliers with particularly low Jaccard scores. For example the minimum score for ASI in table \ref{table:wormz_2022_09_19_jack} is considerably outside the standard deviation and is one of only 7 ASI results with a score lower than 0.5. Figures \ref{img:worms_2022_09_19_cor} and \ref{img:worms_2022_09_19_cor3} both show a number of cases where the predicted intensities are much higher, or lower than the original. ASI appears to have more outliers than ASJ, particularly in figure \ref{img:worms_2022_09_19_cor3}.

Figures \ref{img:00206_32_unet_2022_09_19}, \ref{img:00510_26_unet_2022_09_19} and \ref{img:03324_31_unet_2022_09_19} show the three lowest scoring results from experiment worms-2022-09-19. Each figure comprises three, 2D images taken from the source, original mask and predicted mask stacks - the worst performing image from each stack was chosen to represent the result. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/00206_32_unet_2022_09_19.png}
\caption{An example of a poor result, where the predicted classes are not contiguous and contain some noise. Test datum 00206 from experiment worms-2022-09-19. The three images (from left to right) show the source, the original mask and the prediction. Dark red areas belong to ASI, with cream areas denoting ASJ. Each image is a single 2D image from a stack of 51 images - in this case the 32nd. }
\label{img:00206_32_unet_2022_09_19}
\end{figure}

Figure \ref{img:00206_32_unet_2022_09_19} shows an example of \emph{indecision} in the U-Net prediction. The lower right ASJ area contains a smaller area of ASI. The central area is also mixed, appearing to follow the out-of-focus light in the centre of the image. The upper right ASI is well reproduced.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/00510_26_unet_2022_09_19.png}
\caption{Another example of a poor prediction where the accuracy of the original mask is questionable. Test datum 00510 from experiment worms-2022-09-19. The three images (from left to right) show the source, the original mask and the prediction. Dark red areas belong to ASI, with cream areas denoting ASJ.  Each image is a single 2D image from a stack of 51 images - in this case the 26th.}
\label{img:00510_26_unet_2022_09_19}
\end{figure}

Figure \ref{img:00510_26_unet_2022_09_19} shows a complicated mask that appears to have no corresponding structure in the source image. ASI and ASJ alternate when viewed in order from the top of the image down, whereas the prediction groups ASJ at the top, and ASI below. The original mask has shapes that do not seem to coincide with any observable structure in the source image.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/03324_31_unet_2022_09_19.png}
\caption{A final example of a poor prediction, where the masks do not appear to match the input data closely. Test datum 03324 from experiment worms-2022-09-19. The three images (from left to right) show the source, the original mask and the prediction. Dark red areas belong to ASI, with cream areas denoting ASJ. Each image is a single 2D image from a stack of 51 images - in this case the 31st.}
\label{img:03324_31_unet_2022_09_19}
\end{figure}

Figure \ref{img:03324_31_unet_2022_09_19} depicts a complicated mask containing concave shapes, tiny regions and a large, triangular void towards the bottom of the image. The corresponding area in the source image contains a considerable amount of light that has been captured by the prediction.

\subsubsection{Augmented Data}
It is worth seeing whether or not the U-Net approach can work with the augmented data. While this is not strictly necessary to solve the practical labelling problem - recall that the \emph{C .elegans} dataset is quite standardised in terms of pose - investigating whether or not U-Net can work with worms in any pose is valuable for any future experiments where the dataset contains a wider variety of orientations. Experiment worms-2022-10-03 was trained over the non-interpolated, non-deconvolved dataset. The training set was 55000 items in size, with 400 items reserved for the test set. Although the network was set to train for 20 epochs, only 4 epochs completed due to a hardware failure. Nevertheless, in this experiment the network has \emph{seen} 220000 items, compared to experiment worms-2022-09-19 with 54000 items.

Figure \ref{img:wormz_2022_10_03} shows three sets of images - input, mask and prediction. The aforementioned effect of \emph{more rounded looking} masks is readily apparent, particularly in the first image; the centre neuron in dark grey has a diagonal straight edge on the upper right corner. The second image shows a considerably larger mask in a \emph{T shape} which does not appear in the original mask. The corresponding source image does show light in these areas however. This may be a case of another part of the worm fluorescing that is not one of the four neurons of interest, but which the U-Net has decided is important enough to include. 

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/wormz_2022_10_03.png}
\caption{Three results from experiment worms-2022-10-03. The leftmost image is the input to the network, the middle image the target mask, and the right-hand image the prediction.}
\label{img:wormz_2022_10_03}
\end{figure}

\clearpage

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    ASI & 0.002 & 0.821 & 0.63 & 0.649 & 0.121\\
    ASJ & 0.065 & 0.867 & 0.702 & 0.725 & 0.111\\
    Combined & 0.413 & 0.836 & 0.708 & 0.718 & 0.07\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-10-03, computed over the test set of 400 items.}
\label{table:wormz_2022_10_03}
\end{table}

By definition, original images do not exist for the augmented dataset, making comparisons of the integrated brightness less useful. It is not clear how accurate the stretched and rotated masks in the augmented set are. Nevertheless, we can derive the Jaccard indices between the augmented and predicted masks. Table \ref{table:wormz_2022_10_03} shows the summary statistics with scores comparable to these of experiment worms-2022-09-19, with a small drop in the mean and median scores. The lowest scores are considerably lower, suggesting some images are particularly problematic. ASJ outperforms ASI, and the combined neurons score highest. 

Experiment worms-2022-10-13 follows on from the previous by working with another augmented dataset, only with the deconvolution step applied. This experiment ran for 20 epochs, with a training set size of 27300 items. While the loss continued to fluctuate throughout training, the overall trend appeared to be a reduction in the loss. Time constraints however, denied us the opportunity to test this further as this experiment took over 5 days to run to completion. 
 
\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    ASI & 0.125 & 0.833 & 0.620 & 0.652 & 0.132\\
    ASJ & 0.004 & 0.850 & 0.663 & 0.688 & 0.119\\
    Combined & 0.356 & 0.811 & 0.688 & 0.69 & 0.062\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-10-13, computed over the test set of 400 items.}
\label{table:wormz_2022_10_13}
\end{table}

The scores on the deconvolved data are slightly worse than these of the previous experiment in the combined and ASJ cases but not in the ASI case, which improves by a small amount.

\subsection{Conclusion}

Our U-Net approach appears to be able to create masks that can be used to separate out ASI from ASJ. Unfortunately, separating the left from right does not appear to be possible. The data itself does not always correctly differentiate between the two, therefore it is impossible to deduce whether or not U-Net could accurately predict all four neurons. Nevertheless, the masks are well reproduced and although somewhat larger on average than the originals, the final integrated intensity counts correlate very well once the background has been removed.

There are a number of caveats to consider with the U-Net approach. Training time is a consideration - the larger model consumes more memory and time than the HOLLy approach, with experiment worms-2022-10-26 taking over 5 days to train, generating a considerable amount of data. While U-net takes some time to train, particularly on the larger, augmented datasets, it is usable on smaller, slower systems once trained.

Deconvolution appears to have a detrimental effect on the augmented data results. It is possible that the original masks contain some out-of-focus light and as U-Net tries to match the masks, removing this light might actually make the task harder, as the masks have not been adjusted by the deconvolution process. U-Net looks for patterns in the images - the weights of the convolutional layers become sensitive to certain features; out-of-focus light may or may not provide a useful feature for discrimination with U-Net.

The U-Net predictions tend to be larger and \emph{smoother} than the original data masks. The U-Net approach does not reproduce small artefacts or masks with straight lines, generally producing areas that are smooth regardless of viewpoint.  The anisotropic nature of the images - the different resolution in the Z-Axis - is not modelled in the U-Net experiments. Interpolating the masks and having U-Net operate over isotropic volumes may improve accuracy as changes in the Z axis are small and abrupt when the volumes are unaltered from the originals.

U-Net does produce probabilities for each class, though only one is chosen for the resulting image. When computing the loss, all the probabilities are considered, but the target masks have only one possible solution (one class has a probability of 1.0, all others are 0). U-Net could allow overlapping areas which may may better reflect the underlying physical model - as focus moves away from a particular neuron, the light at that point could be a combination of light from multiple sources. Furthermore, the watershed algorithm creates segments of strict separation, resulting in straight lines where no supporting information exists in the original image - an artefact of the algorithm that is difficult for U-Net to re-create. Indeed, it may not be desirable for U-Net to reproduce such artefacts.  

However, accurate reconstruction of the masks is not the ultimate goal - we wish to measure the relative brightness of two pairs of neurons, differentiating between the two. U-Net makes these predictions, correlating well with the human-watershed masks in the majority of cases.

\clearpage

\section{HOLLy}

We suggested at the end of Chapter \ref{chapter:introduction} that an algorithm that could derive 3D structure and pose from a set of 2D images should be able to perform labelling by posing an existing structure to fit a given 2D image. We begin our investigations by seeing how well HOLLy performs on the \emph{C. elegans} dataset, using summed, 2D projections of the non-augmented, non-deconvolved brightfield images.

Experiment 2022-08-18 attempts to predict the pose only, using an approximation of the four neurons of interest. Figure \ref{img:worm_simple2} shows the layout of the points, clustered into 4 spheres, aligned with the X-Y plane, spanning approximately 1 world space unit in both the X and Y dimensions. The points are fixed throughout training, leaving just the pose and output-sigma to be predicted. Rotation, translation and scale are modelled, allowing more flexibility to fit the structure. Translation and scale are limited to within certain bounds (see appendix \ref{appendix:experiments}). The dataset used is non-augmented, non-deconvolved and uses a summed projection. The images are cropped to an \gls{ROI} of 200 by 200 pixels.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=12cm]{images/worm_estimation.png}
\caption{A basic approximation of the worm neuron structure. To the left, the two spheres represent ASI, with ASJ the two spheres to the right.}
\label{img:worm_simple2}
\end{figure}

\clearpage

Figure \ref{img:2022_08_18_montage} shows results from the test. The orientations appear to be correct in that the majority of the fluorescence is \emph{covered} by the input structure. Analysis of the predicted output-sigma however, shows the value reaching a maximum of 14 and remaining constant until training ends. We judged this to be due to the out-of-focus light present in the dataset.


\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_montage.png}
\caption{A selection of input / output pairs where the structure depicted in figure \ref{img:worm_simple2} is posed to match the input data from the \emph{C. elegans} dataset (from experiment 2022-08-18, taken towards the end of training, from the test set of 100 items).}
\label{img:2022_08_18_montage}
\end{figure}

From this encouraging result, we decided to increase the bounds of the scale and translation and allow a certain amount of points movement in the structure. In experiment 2022-08-18-2 the learning rate for the network was kept the same, but the learning rate for the points was reduced (0.001 and 0.0001 respectively). This has the effect of slowing down any movement of the points, keeping them closer to their starting positions - the same starting positions from experiment 2022-08-18.


Figure \ref{img:2022_08_18_2_montage} shows a sample of the test set from the midpoint of training to the end. Compared to experiment 2022-08-18, the predictions more closely resemble the input images. The predicted output-sigma remains high, but does decrease as the input sigma decreases over training. This is due to allowing some form of point movement. The points move into areas occupied by the out-of-focus light. Figure \ref{img:2022_08_18_2_final} shows the final structure, predicted by the network. While 4 clusters can still be seen, a number of points have moved into the spaces in-between and immediately surrounding the clusters. The centres of each cluster are more dense than before. This represents the gradients of the data more closely - the centre points of the neurons being much brighter than their surroundings, but these immediate surroundings still being significantly greater than the background.


\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_montage.png}
\caption{A selection of input / output pairs where the structure depicted in figure \ref{img:worm_simple2} is posed to match the input data from the \emph{C. elegans} dataset, but allowing the points to move as normal, but with a reduced learning rate (from experiment 2022-08-18-2, taken towards the end of training, from the test set of 100 items).}
\label{img:2022_08_18_2_montage}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_final.png}
\caption{The final, predicted structure when fitting the basic structure to the worm dataset and allowing movement of the points, but with a reduced learning rate (from experiment 2022-08-18-2).}
\label{img:2022_08_18_2_final}
\end{figure}

\clearpage


Ideally, we want the network to learn how to predict the shape and pose in 3D space. The basic dataset contains only a small number of views - does HOLLy still perform well on the augmented dataset? Experiment 2022-08-18-3 has the same parameters as  2022-08-18-2, but is trained over the augmented, non-deconvolved, non-interpolated dataset. This dataset is somewhat larger, with 26000 examples, therefore training time was longer. All other parameters are kept the same.

Figure \ref{img:2022_08_18_3_montage} shows results from the test set. While the overall shape appears to be translated and rotated to a view that appears to match the input, the output images do not closely resemble the original images. Figure \ref{img:2022_08_18_3_final} shows the final structure - two major shapes, with one slightly divided. These two structures can be seen in the output images. The individual neurons can no longer be seen in the final structure despite the small learning rate. Large \emph{cones} of light can be seen in some of the input images - the network has attempted to model these by moving some of the points into these areas. The output sigma is correspondingly high, never dropping below 13. This large sigma accounts for the lack of points required to cover the out-of-focus light.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_3_montage.png}
\caption{A selection of input / output pairs from experiment, where the basic initial structure is posed to match the augmented \emph{C. elegans} data. (From experiment 2022-08-18-3, taken towards the end of training, from the test set of 100 items).}
\label{img:2022_08_18_3_montage}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_3_final.png}
\caption{The final structure when using augmented \emph{C. elegans} data (from experiment 2022-08-18-3). Rather than four distinct clusters, the structure consists of two distinct \emph{lobes}.}
\label{img:2022_08_18_3_final}
\end{figure}

We also tested with the augmented data but disabled altering the structure, as in experiment 2022-08-18. Figure \ref{img:2022_08_18_4_montage} shows that HOLLy performs as expected in minimising the difference between two images by maximising the overlap between the two images, but this does not lead to better pose detection. Two of the pairs of images in figure \ref{img:2022_08_18_4_montage}, highlighted in red, show input images that are viewed along a vector perpendicular to the Z-Axis - in effect, a \emph{side-on} view. The out-of-focus light cones are clearly visible, yet the corresponding prediction shows the basic structure as it appears when viewed along the Z-Axis - it does not appear to have been rotated. In this configuration, the resulting image overlaps with the majority of the light in the input image.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/2022_08_18_4_montage.png}
\caption{A selection of input / output pairs when attempting to map the basic initial structure to the augmented \emph{C. elegans} dataset but not allowing any points movement (from experiment 2022-08-18-4, taken towards the end of training, from the test set of 100 items). Two items are highlighted in red as examples of incorrect results, where the predicted pose is recognisably (and considerably) different from the input }
\label{img:2022_08_18_4_montage}
\end{figure}


\subsection{Mask scoring}

Just as with U-Net, we can assess the performance of HOLLy by comparing how well the masks are reproduced, using the Jaccard index. The difference is in how HOLLy renderings are converted to a binary masks for comparison. We consider any value above half-maximum of the Gaussian of a single rendered point in the underlying to model to form part of the mask. Such a formula has the advantage of being dependent on the output-sigma predicted by HOLLy - a large output sigma will result in a much bigger, and less well defined mask. Output-sigma is reflective of the certainty in HOLLy's predicted pose and structure.

Table \ref{table:wormz_2022_08_18} shows the Jaccard scores for experiment 2022-08-18. Recall that this experiment operates over 2D images, making ASI/ASJ distinctions impossible. Only the combined score - what is background and what is neuron - is possible. The scores are particularly low, due to the high predicted output-sigma (14 in all cases). This results in an amorphous shape, reflective of the output shown in figure \ref{img:2022_08_18_montage}.

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    Combined & 0.104 & 0.265 & 0.152 & 0.149 & 0.026\\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-08-18, computed over the test set of 99 items.}
\label{table:wormz_2022_08_18}
\end{table}

\begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Neurons & Min. Jaccard & Max. Jaccard & Mean Jaccard & Median Jaccard & Std. Dev. \\
    \hline
    Combined & 0.115 & 0.268 & 0.178 & 0.175 & 0.035 \\
    \hline
\end{tabular}
\caption{The minimum, maximum, mean, median and standard deviation of the Jaccard indices for experiment worms-2022-08-18-2, computed over the test set of 99 items.}
\label{table:wormz_2022_08_18_2}
\end{table}

The lowest threshold obtained in experiment 2022-08-18-2 is 0.00042, corresponding to an output-sigma prediction of 10. We incrementally increased the threshold, plotting the results in figure \ref{img:2022_08_18_2_jacc}. Increasing the threshold increases the Jaccard score up to a limit, when it begins to decrease. A threshold of approximately 0.0065 gives the best result, with a minor increase in the standard deviation. This threshold equates to a sigma value of 8.66, if we use the half-maximum. Therefore in this particular experiment, only a small improvement in the predicted output-sigma would result in significantly improved scores. This reflects the reconstructions shown in figure \ref{img:2022_08_18_2_montage}.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_jacc.png}
\caption{A plot of the mask threshold against the mean Jaccard score for experiment 2022-08-18-2, with the standard deviation shown as the grey area.}
\label{img:2022_08_18_2_jacc}
\end{figure}

Figure \ref{img:2022_08_18_2_eg} shows a result from experiment worms-2022-08-18-2. The predicted mask has a Jaccard score of 0.72, set with a threshold of 0.0065.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_eg.png}
\caption{An example prediction from experiment worms-2022-08-18-2. (From left to Right) the input image, the original mask superimposed over the source image and the predicted mask also superimposed.}
\label{img:2022_08_18_2_eg}
\end{figure}

\subsection{Discerning ASI and ASJ}

While the Jaccard index over the 2D results is encouraging, we are concerned with differentiating ASI and ASJ with 3D masks to obtain accurate intensity counts. Using a pre-defined structure we can label parts of the structure manually, but there is no guarantee that HOLLy will align the structure and match the labels to the correct neurons. There are no elements in HOLLy that model for aligning elements based on labels, only structure. For example, the loss function is point independent; so long as the input image is correctly matched, any point in the derived structure can be replaced by another (we see this effect directly in section \ref{sec:losscurves}).

\begin{figure}[H]
\includegraphics[width=12cm]{images/2022_08_18_2_groups.png}
\caption{The k-means derived groups over the final predicted structure shown in figure \ref{img:2022_08_18_2_final}. (for experiment worms-2022-08-18-2). Four groups, labelled in blue, red green and cyan.}
\label{img:2022_08_18_2_groups}
\end{figure}

Therefore, rather than manually labelling an existing structire, once a structure has been derived, we can label each point with a particular group automatically, using \emph{k-means clustering}\footnote{Specifically the scipy k-means++ implementation \url{https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html}}. HOLLy predicts a 3D structure and a 3D transformation. We can therefore create a 3D rendered volume from a 2D trained network. Combining labelled points with the 3D renderer, 4 separate volumes were created, one for each neuron. From these volumes a 3D mask can be created as before. This assumes that four neurons are always present and illuminated to some degree and the derived model has clearly defined clusters. Figure \ref{img:2022_08_18_2_groups} shows the clusters computed over the structure predicted in experiment worms-2022-08-18-2. Two of the clusters have well defined centres (red and cyan) but the remaining two are less well defined and homogeneous.

Equation \ref{eq:3dgauss} defines the Gaussian used in the 3D rasteriser to create the volumes. Once created, we performed the same Jaccard score as in the 2D case - combining all the volumes together and comparing against the combined masks for both ASI and ASJ. Figure \ref{img:2022_08_18_2_thresh3d} shows the 3D Jaccard score, plotted against a chosen threshold. The scores are considerably lower than the 2D case. HOLLy's loss function operates over a 2D image with no depth cues, despite predicting 3D pose and structure. Any error in the predicted Z position will reflected in the 3D Jaccard index but not the 2D loss.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_thresh3d.png}
\caption{The mean Jaccard index (blue) and standard deviation (grey) plotted against a threshold value for experiment 2022-08-18-2 }
\label{img:2022_08_18_2_thresh3d}
\end{figure}

With separated volumes for each of the 4 groups we can integrate the light intensity under the masks using the best threshold obtained (0.0053). We perform this count over the 100 items of the test set in experiment worms-2022-08-18-2. Correlations are performed between the original ASI and ASJ counts and every pair combination of predicted groups. For example, we combined the groups labelled 0 and 1 into a single group, with groups 2 and 3 forming a second group, reducing the 4 predicted volumes into two predicted volumes. Table \ref{table:wormz_2022_08_18_2_cor} lists these correlations.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_08_18_2_volumes.png}
\caption{The original (left) and predicted (right) volumes for one item from the test set from experiment worms-2022-08-18-2. ASI and ASJ are shown as grey and red respectively, in the original mask volume. Two large \emph{lobes} are predicted using the threshold value of 0.0053.}
\label{img:2022_08_18_2_volumes}
\end{figure}

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Group Pair & Spearman ASI & P-Value & Spearman ASJ & P-Value \\
    \hline
    0 \& 1 & 0.272 & 0.006 & 0.0720 & 0.477 \\
    2 \& 3 & 0.211 & 0.035 & 0.115 & 0.251 \\
    \hline
    0 \& 2 & 0.266 & 0.007 & 0.109 & 0.282 \\
    1 \& 3 & 0.268 & 0.007 & 0.127 & 0.209 \\
    \hline
    0 \& 3 & 0.314 & 0.002 & 0.098 & 0.331 \\
    1 \& 2 & 0.225 & 0.024 & 0.124 & 0.221 \\
    \hline
\end{tabular}
\caption{Spearman correlation and p-values between the original integrated counts and each pair of predicted groups, calculated across the test set from experiment worms-2022-08-18-2.}
\label{table:wormz_2022_08_18_2_cor}
\end{table}

No correct configuration of pairs correlates well, with a significant p-value. Group 0 and 3 as ASI has a slight correlation with a p-value of 0.002 but the corresponding pair of group 1 and 2 does not correlate well with ASJ. Figure \ref{img:2022_08_18_2_volumes} shows one original mask and its corresponding prediction; two volumes are predicted which are both much larger than the volumes in the original.

We can increase the threshold past the optimum in order to shrink the over-large, predicted volumes. Figure \ref{img:2022_08_18_2_depth} shows the original mask and the predicted mask from figure \ref{img:2022_08_18_2_volumes}, but the threshold has been increased from 0.0053 to 0.02403. The left-hand image shows a view from above where the X and Y positions of the predicted volumes appear to closely match the original mask. The right-hand image shows the same volumes viewed along the Y axis. The predicted volumes do not match the original volumes in the Z axis. This lack of accuracy in the Z axis is the cause of the lower Jaccard index 3D compared with 2D.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2018_08_18_2_depth.png}
\caption{Two views of the original mask (red and grey) and the corresponding prediction (yellow) from figure \ref{img:2022_08_18_2_volumes} with a higher threshold of 0.02403.}
\label{img:2022_08_18_2_depth}
\end{figure}

\subsection{Initial structure placement}
\label{sec:init_structure}
Rather than the arbitrary starting positions of the previous experiments, we took a closer look at the \emph{C. elegans} dataset to decide the initial structure. The annotations contain the centroids for each neuron, derived from the masks chosen by the user with \emph{Neuroshed}. From these positions, the distances between the neurons can be computed and an average obtained. Table \ref{table:neurondists} lists the mean and median distances between each pair (in pixels and microns). The Z position has been scaled by a factor of 6.2, accounting for the anisotropic resolution. Only examples with all four neurons were considered. Positioning points in 4 locations that preserve these pair distances will result in a consistent shape that reflects the average of the underlying data.

\begin{table}[H]
\centering
\begin{tabular}{|c||c|c|c||c|c|c|}
    \hline
    Neuron Pair & Mean & Median & Std. Dev. & Mean & Median & Std. Dev.\\
    \hline
    ASI-1 - ASI-2 & 59.007 & 58.3606 & 16.2174 & 19.03 & 18.50 & 5.23 \\
    ASI-1 - ASJ-1 & 65.4407 & 63.588 & 22.2502 & 21.10 & 20.51 & 7.18 \\
    ASI-1 - ASJ-2 & 62.3405 & 58.0348 & 22.0013 & 20.10 & 18.72 & 7.10 \\
    ASI-2 - ASJ-2 & 63.2232 & 61.1559 & 22.6021 & 20.39 & 19.72 & 7.29 \\
    ASI-2 - ASJ-1 & 64.4355 & 59.552 & 23.1826 & 20.78 & 19.21 & 7.48 \\
    ASJ-1 - ASJ-2 & 77.9288 & 80.779 & 21.2357 & 25.13 & 26.05 & 6.85 \\
    \hline
\end{tabular}
\caption{The mean \& median distances between all pairs of neurons, and the standard deviation. Values are given in pixels and microns respectively.}
\label{table:neurondists}
\end{table}

The standard deviation ranges from approximately a quarter to a third of the median distance between each neuron. This suggests that a single, accurate, rigid structure prediction may not be possible, unless the variation can be modelled using the global scale parameters. 

However, as previously mentioned, the distinction between left and right cannot be made - a neuron referred to as \lq 1\rq\ may be on the left in one volume, only to be the right neuron in another. Therefore it is impossible to define a single shape as only 3 unique distances can be determined - the distances between neurons of the same class and the distance between the centres of these classes. Nevertheless, we can use these distances as a guide to obtain approximate locations . We used a least-squares, minimisation algorithm, with the \emph{nlopt} library \footnote{\url{https://nlopt.readthedocs.io/en/latest/}}. The minimisation algorithm used was \emph{DIviding RECTangles (DIRECT).} \citep{jonesLipschitzianOptimizationLipschitz1993}. Table \ref{table:neuronposes} lists the derived positions, with ASI-1 being placed at the origin.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|}
    \hline
    Neuron & x & y & z \\
    \hline
    ASI-1 & 0 & 0 & 0 \\
    ASI-2 & -3.22 & -33.26 & -47.85 \\
    ASJ-1 & -23.44 & -59.09 & 1.85 \\
    ASJ-2 & -45.23 & 9.33 & -35.15 \\
    \hline
\end{tabular}
\caption{The minimised distances using the derived neuron-pair distances. Distances are in pixels.}
\label{table:neuronposes}
\end{table}

The final step involves converting the pixel positions to world space. The centre-of-mass is used as the origin instead of ASI-1, reflecting the \gls{ROI} cropping step in the dataset processing. Experiment worms-2022-10-24-3 uses this derived model and attempts to fit it to the \emph{C. elegans data}. This set is 2D, augmented and deconvolved, with per-image background subtraction. Only the pose is predicted - the structure is fixed. Figure \ref{img:2022_10_24_3_montage} shows the results towards the end of training, from the test set. At first glance the results appear reasonable, with the original structure being \emph{covered} by the the predictions. However, the predicted output-sigma is very high (14) and remains so through-out training. While this is somewhat expected in order to compensate for minor changes in each structure, not seeing a correlation between the input and output sigma suggests that structure is not optimally modelled.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_10_24_3_montage.png}
\caption{A montage of prediction pairs where instead of the initial basic structure, the derived structure is fitted. The points in that structure are not allowed to move (from experiment worms-2022-10-24-3 from the test set, towards the end of training). In each pair, the left-hand image is the original, the right-hand is the corresponding prediction.}
\label{img:2022_10_24_3_montage}
\end{figure}

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Group Pair & Spearman ASI & P-Value & Spearman ASJ & P-Value \\
    \hline
    0 \& 1 & 0.405 & \num{3.5e-05} & 0.228 & 0.0242 \\
    2 \& 3 & 0.305 & 0.002 & 0.126 & 0.216 \\
    \hline
    0 \& 2 & 0.370 & \num{1.8e-04} & 0.128 & 0.209 \\
    1 \& 3 & 0.328 & 0.001 & 0.148 & 0.146 \\
    \hline
    0 \& 3 & 0.376 & \num{1.3e-04} & 0.202 & 0.046 \\
    1 \& 2 & 0.329 & 0.001 & 0.087 & 0.397 \\
    \hline
\end{tabular}
\caption{Spearman correlation and p-values between the original integrated counts and each pair of predicted groups, calculated across the test set from experiment worms-2022-10-24-3.}
\label{table:2022_10_24_3_cor}
\end{table}

Table \ref{table:2022_10_24_3_cor} shows the correlation between the original and predicted integrated light counts, using the original and predicted volumes. The threshold was set at 0.0099. The scores are slightly higher than these from worms-2022-08-18-2, with two combinations having two p-values below 0.05 (ASI groups 2 \& 3 with ASJ groups 0 \& 1, and ASI groups 1 \& 2 with ASJ groups 0 \& 3). However, the correlations are low in both cases, with the highest being 0.329.

\subsection{Silhouettes}

One of the key differences between the structure and labelling challenges identified in Chapter \ref{chapter:introduction} is in the former, more brightness is related to more structure, whereas in the latter, the brightness relates to more protein products within and around an existing structure. A dimmer structure is no less important than a brighter one in the \emph{C. elegans} labelling problem with regards to loss; a single dim neuron should contribute as much information to the predicted pose as the brighter three neurons in the input image. The relationship between brightness and structure needs to be relaxed.

One proposed method was the use of silhouettes. Recall from Chapter \ref{chapter:expand} that the outline of the object seemed to heavily contribute to the final result. Rather than provide HOLLy with an original source image from a particular dataset, a silhouette or mask might prove more useful in the labelling challenge, removing any sensitivity to internal brightness variations.

HOLLy requires a small alteration to the differentiable renderer. Rather than use a Gaussian for the final rasterisation step, a circle of a fixed diameter is used, with the internal pixels set to 1, with any outside set to 0. Overlapping circles are clamped to a maximum of 1. This results in an output image consisting of only zeroes and ones. No input sigma is provided and no output sigma is predicted.

Recall that HOLLy uses the L1 loss between pixel values to provide a loss, however in the silhouette case, the loss will be computed between the rendered silhouette and the original mask. The loss per pixel will either be 1 or 0 - very similar to the U-Net approach where each pixel belongs to one and only class from a small number of classes.  The loss function was changed to the \emph{Jaccard Distance Loss}, defined by equation \ref{eq:jaccard_loss}. This is the same as the Jaccard Index, but converges at zero instead of one. Depending on the precise implementation, some Jaccard Loss functions include a smoothing function - a small number added to both the numerator and denominator, and as a multiplier to the final loss, in order to avoid exploding or vanishing gradients.

\begin{equation} \label{eq:jaccard_loss}
J_{loss}(X,Y) = 1.0 -  (|X \& Y|)/ (|X|+ |Y| - |X \& Y|)       
\end{equation}

The output from our network differs from the U-Net - we do not produce a set of class probabilities for each pixel. Each pixel can have only one of two values - 0 or 1.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/silhouette_initial.png}
\caption{A selection of input / output pairs showing a silhouette of the Stanford Bunny and the corresponding prediction of the pose (from experiment 2022-04-20). The top block of images are from early in training, the lower block from later in training.}
\label{img:silhouette_initial}
\end{figure}

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_04_20_rot_heatmap.png}
\caption{A heatmap of the differences between input and predicted poses for silhouettes of the Stanford Bunny (experiment 2022-04-20). Training proceeds down figure. Each line of the heatmap is a histogram of angle differences computed over the test set of 400 items. The difference in poses converges on 0 which is the expected value for a good prediction when the structure is provided.}
\label{img:2022_04_20_rot_heatmap}
\end{figure}

With the differentiable renderer changed, it is possible to test our silhouette version of HOLLy with simulated data. Experiment 2022-04-20 starts with the Stanford Bunny, predicting pose only. Figure \ref{img:silhouette_initial} shows the input datum next to the predicted output, illustrating the silhouette rendering technique. The final rotation predictions appear quite accurate; figure \ref{img:2022_04_20_rot_heatmap} shows a very quick convergence towards zero. This is confirmed in figure \ref{img:2022_04_20_entropy} - the entropy of pose differences reduces considerably over training.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_04_20_entropy.png}
\caption{A plot of the Shannon Entropy over the angle differences distribution against the training step, from figure \ref{img:2022_04_20_rot_heatmap}.}
\label{img:2022_04_20_entropy}
\end{figure}

The next step is to discover whether or not structure and pose can be predicted using the silhouette method. Experiment 2022-04-20-2 attempts this on the Stanford Bunny model, but fails to converge on any particular pose. Figure \ref{img:2022_04_20_2_rot_heatmap} shows the heatmap of the pose differences as before, but no clear pattern emerges. Figure \ref{img:2022_04_20_2_entropy} shows no meaningful improvement in the pose prediction. This is not completely unexpected as any movement of points within the structure will not result in any change in the loss - there is less information in the image and no internal gradients for the movement of points. The final structure is an amorphous shape. The choice to change the loss function may also have affected the points movement, though exactly how remains unclear. It is entirely possible to use the L1 loss for the point movement, and the Jaccard loss to train the network segment but this has yet to be attempted.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/2022_04_20_2_rot_heatmap.png}
\caption{A heatmap of the differences between input and predicted poses when predicting both pose and structure from silhouettes of the Stanford Bunny (from experiment 2022-04-20-2). Training proceeds down figure. Each line of the heatmap is a histogram of angle differences computed over the test set of 400 items.}
\label{img:2022_04_20_2_rot_heatmap}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_04_20_2_entropy.png}
\caption{A plot of the Shannon Entropy over the angle differences distribution when predicting both pose and structure from silhouettes of the Stanford Bunny, from figure \ref{img:2022_04_20_2_rot_heatmap}.}
\label{img:2022_04_20_2_entropy}
\end{figure}

Although the silhouette method appears not to be able to reproduce the structure, we already have some idea of what the structures of the four \emph{C. elegans} neurons are. It may be possible to use an approximation of the worm structure as a starting point and either hold or change the structure through training. To perform such an experiment, we need to alter HOLLy slightly - specifically the data-loader. The data-loader must now load a pair of images - the brightfield image and its corresponding mask.

We want to predict the mask from the bright-field image, rather than predict the mask from an input mask. While the previous experiments showed that it was indeed possible to rotate a silhouette to match an input silhouette, predicting such a pose from a bright-field image to match an original mask is a different problem - one that attempts to draw a relationship between two different kinds of images.

Experiment 2022-06-30 attempts this with the \emph{C. elegans} dataset. The particular dataset used consisted of non-interpolated augmented images, each having been deconvolved. The training set is 10000 items in size, with a further 400 for testing. The initial points are arranged into an approximation of the ideal worm structure as shown in Figure \ref{img:worm_simple_obj} - 4 ovoids with the longest axis aligned with Z. The points in this structure are not permitted to move as training progresses - only the pose may be optimised. A sigma curve is used to add a level of blur on top of the original bright-field images, reducing to 0 at the end of training.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worm_simple_obj.png00.png}
\caption{An approximation of the ideal worm structure, used in experiment 2022-06-30.}
\label{img:worm_simple_obj}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_06_30_loss.png}
\caption{The training and test set losses plotted against training step when attempting to predict the output mask from the input brightfield image (from experiment 2022-06-30). Both the test loss (red) and training loss (blue) are highly variable and do not converge.}
\label{img:2022_06_30_loss}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_06_30_montage.png}
\caption{A selection of results from attempting to predict the mask from the brightfield image (from experiment 2022-06-30). Each result is a triple - the first image shows the brightfield input, the second is the corresponding original mask, with prediction forming the final image. The pose predictions are poor.}
\label{img:2022_06_30_montage}
\end{figure}

Experiment 2022-06-30 failed to converge on a good solution for the pose. The loss curves in figure \ref{img:2022_06_30_loss} shows an odd shaped curve that increases dramatically over training time. Figure \ref{img:2022_06_30_montage} supports this conclusion - very few of the results from the test set show good pose predictions.

There are several possible reasons for this poor performance: the initial structure does not represent the underlying masks very well, the relationship between mask and brightfield is more complex than anticipated, the input sigma curve is incorrect or perhaps not even needed, or any combination of these causes. The silhouette approach was not pursued further due to time constraints and the perception that other approaches might yield better results.

\subsection{Removal of background and out-of-focus light}

While deconvolution and automatic background selection increase the amount of information within an image, a large proportion of out-of-focus light still remains. Indeed, the datasets with these functions applied still retain areas outside the masks that are bright enough to warrant modelling with HOLLy - typically these areas are a hundredth of the intensity of the brightest areas, but closer to a fifth of areas still counted as a neuron in the original masks. In order to improve HOLLy modelling, more drastic background and noise removal was considered.

Recall from section \ref{sec:worm_background} that an intensity score of 303 could be considered the point where $95\%$ of the total light would be accounted for. We can use this score as the background subtraction value across the entire dataset and perform training again. Experiment 2022-10-31 uses this background subtraction score, along with deconvolution and augmentation. Figure \ref{img:2022_10_31_montage} shows some of the results from the test set of 100 images. A number source images are well predicted but in all cases, only three distinct clusters are apparent. Looking closer at the final predicted structure, figure \ref{img:2022_10_31_last} shows three distinct clusters and a smaller number of points in-between. The area where the fourth cluster should appear contains a number of points spread over a larger area.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_10_31_montage.png}
\caption{A selection of results, towards the end of training, when attempting to predict pose and structure over the \emph{C. elegans} dataset (from experiment 2022-10-31). The input data has had a background value of 303 subtracted from each image. Each pair of images shows the input source image (left) and the resulting prediction (right).}
\label{img:2022_10_31_montage}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_10_31_last.png}
\caption{The final predicted model when using a background subtraction value of 303 (from experiment 2022-10-31).}
\label{img:2022_10_31_last}
\end{figure}

Recall from figure \ref{img:lumo_worm} that ASI-1 has a lower median intensity value than all other neurons, bringing it closer to background on average. The higher background subtraction moves  the points that would otherwise form a cluster representing ASI-1 further apart to account for the out-of-focus light that appears between the neurons.

We performed the same 3D mask analysis against the original integrated intensity, using k-means clustering to create the four groups representing each neuron. Table \ref{table:2022_10_31_cor} lists the correlations between each group pair and the original ASI/ASJ counts. The threshold for the masks was set to the best performing threshold from the 2D case - 0.00139. None of the correlations are above 0.234 and none have a p-value smaller than 0.07.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Group Pair & Spearman ASI & P-Value & Spearman ASJ & P-Value \\
    \hline
    0 \& 1 & 0.152 & 0.133 & -0.138 & 0.172 \\
    2 \& 3 & 0.147 & 0.146 & -0.173 & 0.086 \\
    \hline
    0 \& 2 & 0.133 & 0.190 & -0.175 & 0.083 \\
    1 \& 3 & 0.152 & 0.133 & -0.141 & 0.164 \\
    \hline
    0 \& 3 & 0.121 & 0.234 & -0.199 & 0.049 \\
    1 \& 2 & 0.181 & 0.074 & -0.101 & 0.318 \\
    \hline
\end{tabular}
\caption{Spearman correlation and p-values between the original integrated counts and each pair of predicted groups, calculated across the test set from experiment worms-2022-11-07.}
\label{table:2022_10_31_cor}
\end{table}

In section \ref{sec:worm_background} Otsu's method was highlighted as a potential method to detect the background value, but was deemed unsuitable. Nevertheless, an experiment was conducted on a dataset using Otsu's method to remove the background and more of the out-of-focus light. Figure \ref{img:2022_10_31_montage} shows results from the test set, towards the end of training for experiment worms-2022-11-07. In each pair, the left hand input image has firstly been augmented, followed by background subtract with Otsu's method. The four individual neurons can be seen in a small number of input images, but many appear to show two elongated bright areas, or no discernible structure. Figure \ref{img:2022_10_31_last} shows the final predicted structure, consisting of two elongated clusters.
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_11_07_montage.png}
\caption{A selection of results when attempting to predict the pose and structure over the \emph{C. elegans} dataset with Otsu background subtraction (from experiment worms-2022-11-07, towards the end of training). Each pair of images shows the input source image (left) and the resulting prediction (right).}
\label{img:2022_11_07_montage}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_11_07_last.png}
\caption{The final predicted model when using Otsu background subtraction (from experiment worms-2022-11-07).}
\label{img:2022_11_07_last}
\end{figure}

These predicted structures do appear to represent the underlying dataset, but the new underlying dataset does not accurately represent the structure of the neurons.

\subsection{3D approaches}

Rather than work with 2D projections of an inherently 3D dataset it is possible to work directly with the 3D volume data. The differential renderer inside HOLLy can be  altered to produce a 3D volume instead of a 2D projection. Changing the Gaussian used in the final rasterisation step and the screen transform matrices are the key elements that require alteration.

Unfortunately, the differentiable renderer has a number of tensors with a dimension size equal to the number of points in the model. The number of dimensions of these tensors has to match the dimensions of the output - in this case 3 - significantly increasing the memory requirements. The amount of memory can be reduced by replacing 32-bit floating point types with 16-bit where possible. However \emph{half-precision} (as it is referred to in the \emph{PyTorch} documentation) requires more complicated steps as not all 16-bit operations are supported on various hardware. Nevertheless, the potential memory savings encouraged us to create a 3D version of HOLLy with half-precision support.

Typically, the image sizes used in the HOLLy experiments were 128 x 128 pixels. Even with half-precision, it was not possible to create a volume 128 pixels in all dimensions. Therefore the modelling pipeline was changed to accept and produce shallower image volumes, typically 128 x 128 x 32 pixels. Equation \ref{eq:3dpipe} describes the new operations, with the matrix Z performing a final scale along the Z axis to \emph{squash} the model to fit the final volume. This is somewhat reflective of the anisotropic resolution of the original \emph{C. elegans} data.

\begin{equation} \label{eq:3dpipe}
\begin{split}
M = Z_{x,y,z}T_{x,y}R_{x,y,z}S_{x,y,z} \\
\text{where } Z_{x,y,z} = \begin{bmatrix} 
1.0 & 0 & 0 \\
0 & 1.0 & 0 \\
0 & 0 & Z_{dimension} / XY_{dimension} \\
\end{bmatrix}
\end{split}
\end{equation}

The renderer performs the final rasterisation step in 3D, necessitating a 3D Gaussian, described by equation \ref{eq:3dgauss}.

\begin{equation} \label{eq:3dgauss}
G(x,y,z) = \frac{1}{{\sqrt{2\pi \sigma}^3}} e^{-\frac{x^2 + y^2 + z^2}{2 \sigma^2}}
\end{equation}

It is possible to perform the convolution operation in any number of dimensions, if sufficient resources are available. \emph{PyTorch} has functions available for 3D convolutions. We replaced all references to 2D convolutions with 3D ones, altered the data-loader to keep the images in 3D and not create projections and finally altered the differential renderer to produce volumes with 3D Gaussians. We could directly compare the output volumes with the input volumes using the same L1 loss as before.


\subsubsection{Simulated test data}

As in the 2D experiments, we tested whether or not 3D-HOLLy can match the pose of an input image. Experiment 2022-07-25-3d attempts to model translation and rotation using the Stanford Bunny test object. The input volumes are 128 pixels wide, 128 pixels tall, with a depth of 16 pixels. The network was run for 40 epochs with a training set size of 40,000. Figure \ref{img:nope_2022_07_25_heatmap} shows the pose prediction improving as training continues, with a final entropy of 0.64.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_07_25_heatmap.png}
\caption{A heatmap of the difference between true and predicted rotations for experiment 2022-07-25-3d. Training proceeds down the heatmap.}
\label{img:nope_2022_07_25_heatmap}
\end{figure}

Experiment 2022-02-14 attempted to predict structure and output-sigma in addition to pose, using an increased volume size of 128 by 128 by 32 \gls{voxel}s. This network uses a smaller batch size and takes longer to run - the memory required increases by a minimum of 32 times and more convolutions steps must be taken for each volume when compared to the original HOLLy. Figure \ref{img:nope_2022_02_14} shows a selection of the results through training, from the test set. The model has been reproduced along with reasonable pose prediction (although some are flipped). Figure \ref{img:nope_2022_02_14_rot} confirms this as two angle distances are very pronounced. 

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/nope_2022_02_14_pair.png}
\caption{A selection of input(left) and output(right) pairs from experiment 2022-02-14 over the test set. Despite the output sigma prediction being poor in some cases (bottom-right for example) the overall model is good, as are the pose predictions. Each image is a summed projection of the corresponding volume.}
\label{img:nope_2022_02_14}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_02_14_rot.png}
\caption{A heatmap showing the difference between the input and predicted rotations, categorised into 100 bins, for experiment 2022-02-14. The test set is 200 items in size. Brighter categories contain more examples. Training progresses from the top downwards. The top of the heatmap shows the first training step where the distribution is widest. Further down, the distribution narrows and splits into two distinct groups.}
\label{img:nope_2022_02_14_rot}
\end{figure}

The baseline Stanford Bunny example used so far required some changes in order to run on the available equipment. The number of points that could be fitted was reduced to 200, the batch-size reduced to 2 and the Z dimension of the volume set to 32 pixels.

Continuing with simulated data, experiment 2022-08-31-3d produced interesting results. Figure \ref{img:nope_2022_08_31_loss} shows the loss on the training and test sets; note the downward, average trend but the considerable \emph{spikes}. These appear to correlate with poor translation and rotation, shown in figures \ref{img:nope_2022_08_31_trans} and \ref{img:nope_2022_08_31_rots}. The entropy plot - Figure \ref{img:nope_2022_08_31_rots} shows a downward trend with increasing variance towards the end of training. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_08_31_loss.png}
\caption{A plot of the training (blue) and test set(red) losses against the training step when attempting to match the pose of a 3D volume of the Stanford Bunny (for experiment 2022-08-31-3d).}
\label{img:nope_2022_08_31_loss}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_08_31_trans.png}
\caption{A plot of mean test set differences between input and output translations against the training step when attempting to match the pose of a 3D volume of the Stanford Bunny (for experiment 2022-08-31-3d).}
\label{img:nope_2022_08_31_trans}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_08_31_rots.png}
\caption{A heatmap of the difference between true and predicted rotations for experiment 2022-08-31-3d. Training proceeds down the heatmap.}
\label{img:nope_2022_08_31_rots}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_08_31_entropy.png}
\caption{A plot of the entropy of the difference between true and predicted rotations, against the training step, for experiment 2022-08-31-3d.}
\label{img:nope_2022_08_31_entropy}
\end{figure}

The training time is considerably longer for the 3D version, with a 20 epoch, 40,000 training set sized network requiring almost 24 hours. Nevertheless, the final structure achieved an RMSD score 0.008 using \emph{CloudCompare}; the final structure is excellent, despite being composed of fewer points than the original. The key advantage is the resulting structure is not mirrored. By solving in 3D, the Z axis ambiguity has been removed.

Before training on the experimental \emph{C. elegans} data, we began with an approximation of the structure, generating a set of 3D volumes for 3D-HOLLy to train over and attempt to predict. Beginning with experiment 2022-06-22, we used an approximation of the four neurons - four spheres in a plane - generating the input images from this model. Figure \ref{img:2022_06_22_montage} shows results from the test set, with the first five rows from early in training and the final five rows from the end of training. The resulting model is well realised and the pose is accurately matched in the majority of cases. Output-sigma is not predicted and no anisotropic scaling is modelled (or applied to the input data).

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_06_22_montage.png}
\caption{A montage of results from experiment 2022-06-22. The first five rows are from the start of training, the bottom five rows are from the end of training. Each pair consists of the input image (left) and the corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:2022_06_22_montage}
\end{figure}

Moving forward, experiment 2022-09-29 predicts structure and output-sigma, in addition to just pose, on the Stanford Bunny model. Figure \ref{img:2022_09_29_heatmap} is a heatmap of the difference between the input and output rotations across the test set. Pose prediction difference narrows as training progresses, showing a similar pattern to successful 2D HOLLy runs. The final structure is well realised with an RMSD score of 0.0485 (derived with \emph{CloudCompare} - see Chapter \ref{chapter:holly}).

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_09_29_heatmap.png}
\caption{A heatmap of the differences between input and predicted poses for experiment 2022-09-29. Training proceeds down figure. Each line of the heatmap is a histogram of angle differences computed over the test set of 100 items.}
\label{img:2022_09_29_heatmap}
\end{figure}

In section \ref{sec:scaling} scaling was introduced, as a variable that might be useful for modelling the \emph{C. elegans} neurons. Section \ref{sec:init_structure} listed the mean distances and the standard deviations between the neuron centroids - considerable variation between the distances exists. Modeling scale might allow for a more accurate structure to be retained across varying volumes. 

Experiment 2022-09-01 attempted to predict scaling in addition to pose and structure. Output-sigma is not predicted. Unfortunately the resulting structure was poorer than that in experiment 2022-09-29. Figure \ref{img:2022_09_01_montage} shows a montage of results from the test set. The model is not full realised The rotation is not well predicted - figure \ref{img:2022_09_01_heatmap} shows the networking beginning to converge on a solution but the differences between the input and output rotations are spread widely across the possible range of values.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_09_01_montage.png}
\caption{A montage of results from the test set from experiment 2022-09-01, towards the end of training. Each pair contains the input image (left) and the corresponding output (right). Each image is a summed projection of the corresponding volume.}
\label{img:2022_09_01_montage}
\end{figure}
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_09_01_heatmap.png}
\caption{A heatmap of the differences between input and predicted poses for experiment 2022-09-01. Training proceeds down figure. Each line of the heatmap is a histogram of angle differences computed over the test set of 100 items.}
\label{img:2022_09_01_heatmap}
\end{figure}

The entropy of the rotation prediction in experiment 2022-09-01 decreases slowly and continues to do so until the experiment stops. This suggested that running the experiment for longer might improve the result. Experiment 2022-12-07 increases the number of epochs from 20 to 36. Figure \ref{img:nope_2022_12_07_heatmap} shows the differences between the input and output rotations as before. A clear pattern can be seen from steps 311 and 702. The range of differences has reduced slightly but within this range there is little change from step to step. Looking at the structure as training progresses, there is very little change during these periods, which strongly suggests the model has entered a local minima.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_12_07_heatmap.png}
\caption{A heatmap of the differences between input and predicted poses for experiment 2022-12-07. Training proceeds down figure. Each line of the heatmap is a histogram of angle differences computed over the test set of 100 items.}
\label{img:nope_2022_12_07_heatmap}
\end{figure}

\subsubsection{\emph{C. elegans} volumes}

Starting with experiment worms-2022-12-05, we began a series of experiments on a number of variations on the \emph{C. elegans} dataset. In worms-2022-12-05, the dataset used consists of 2600 items (no augmentation), \gls{ROI} cropping, deconvolution and automatic background removal. As previously stated, memory requirements are considerable for the 3D version of HOLLy, adversely affecting the time required to complete. After cropping to the \gls{ROI}, the resulting volume is resized to 100 by 100 by 25 pixels. Output-sigma, structure, rotation and translation are predicted, but scale is not.

Figure \ref{img:2022_12_05_montage} shows results from the test set of 100 items, towards the end of training. While the bright areas of the input volumes are \emph{covered} by the predictions, the finer structure is not visible - only two bright areas can be seen. The predicted sigma is considerably higher than the input sigma (recall that the input sigma is a combination of the \emph{intrinsic} blur in the original volume with an additional blur applied). Figure \ref{img:2022_12_05_last} shows the final predicted structure. Two clusters can be seen at the centre of the structure, corresponding to the two predicted bright spots in figure \ref{img:2022_12_05_montage}. However, there is a considerable number of points above and below these clusters, spreading outwards along the Z-Axis. These points seem to correspond to the remaining out-of-focus light not removed by the deconvolution.

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/2022_12_05_montage.png}
\caption{A montage of results when attempting to predict volumes from the \emph{C. elegans} (experiment worms-2022-12-05). Each pair consists of the input image (left) and the corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:2022_12_05_montage}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_12_05_last.png}
\caption{The final predicted structure of the \emph{C. elegans} data from volumes (experiment worms-2022-12-05).}
\label{img:2022_12_05_last}
\end{figure}

\clearpage

Figure \ref{img:2022_12_05_slice} shows a view of a volume from the training set, viewed along the X axis. While the neuron \emph{bright-spots} are visible, a considerable amount of light can be seen at the top and bottom of the volume. These areas are of the order of one-hundredth the brightness of the bright areas.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_12_05_slice.png}
\caption{A Y-Z plane view of a volume from the training set from experiment worms-2022-12-05. While bright, central \emph{blobs} can be seen in the centre of the image (yellow) a considerable \emph{fan-like} area in red can also be seen above and below these central structures.}
\label{img:2022_12_05_slice}
\end{figure}

We attempted the same experiment again, but using an augmented version of the dataset. This set is 10 times larger than the previous dataset, consisting of rotated views of each volume. Figure \ref{img:2022_12_05_2_last} shows the final predicted structure for experiment worms-2022-12-05-2. A similar structure appears - a narrow central band with two clusters (albeit less well defined) and two clouds of points that fan outwards along the Z-Axis.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_12_05_2_last.png}
\caption{The final predicted structure of the augmented \emph{C. elegans} volumes (experiment worms-2022-12-05-2).}
\label{img:2022_12_05_2_last}
\end{figure}

Similar to the problems encountered when initially training the 2D version of HOLLy on the Stanford Bunny, areas that contain more relevant information are not necessarily brighter (containing more fluorophores). The complicated areas around the ears do not contain more fluorophores than simpler parts of the body. In the case of the \emph{C. elegans} images, using a sum projection to create 2D images does increase the brightness of the neuron areas against the background, but in 3D no sum is computed, reducing the contrast between neuron and background.

In an attempt to increase the contrast further, in experiment worms-2022-12-04, we increased the background cut-off to 303 and increased the number of deconvolution steps from 5 to 8. The dataset is augmented using the 3D rotation method outlined in section \ref{sec:augmentation}, with a final resizing to 100 pixels square, 25 pixels in depth.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_12_04_montage.png}
\caption{A montage of input / output pairs when predicting the \emph{C. elegans} data with a high background removal value of 303 (experiment worms-2022-12-04, towards the end of training). Each image pair consists of an input image from the test set (left) and corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:nope_2022_12_04_montage}
\end{figure}

For clarity, figure \ref{img:nope_2022_12_04_pair} shows a pair from the previous montage. The original image shows four volumes, two of which are considerably brighter. The prediction overlaps these two brightest volumes, but the dimmer volumes are not discernible in the prediction. The prediction also contains a considerable cloud of points towards the top-left and bottom-right of the image.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/nope_2022_12_04_pair.png}
\caption{An input image from the augmented \emph{C. elegans} dataset, and a corresponding prediction (experiment 2022-12-04). The input image (left) shows four clear volumes, whereas the prediction (right) shows two larger volumes and a considerable number of points outside of these two volumes.}
\label{img:nope_2022_12_04_pair}
\end{figure}

The final predicted structure is show in figure \ref{img:worms_2022_12_04_last}. Two central clusters can be seen, aligned with the Z axis. Conic or \emph{fan-like} structures can be seen expanding outwards from these two central clusters, along the Z axis. This structure is consistent with the idea that there is still a considerable amount of out-of-focus light, which is subsequently modelled by HOLLy.
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/worms_2022_12_04_last.png}
\caption{The final predicted structure of the augmented \emph{C. elegans} dataset (experiment worms-2022-12-04).}
\label{img:worms_2022_12_04_last}
\end{figure}

Another option to amplify the important parts of the volume is to use the masks. We can \emph{mask-out} the light that wasn't deemed important by the user, training 3D-HOLLy on the masked images, while simultaneously testing 3D-HOLLy on the original, unmasked images. Recall that we apply an input-sigma to all the images during training, blurring the input images less and less as training continues. We apply a Gaussian blur to the masks, setting the cutoff to half of the maximum intensity of a single Gaussian with the sigma set to the current input-sigma. As a result, the masks contract as training continues. Experiment worms-2022-12-09-3 operates over the same dataset as worms-2022-12-05-2 but areas outside the mask are set to zero. Figure \ref{img:worms_2022_12_09_3_montage} shows a montage of results towards the end of training. Two \emph{lobes} can clearly be seen, with a rough alignment to the major bright-spots in the original images. Figure \ref{img:nope_2022_12_09_3_last} shows the final predicted structure in more detail. The two lobes are fringed by a number of points with a more homogeneous structure.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_12_09_3_montage.png}
\caption{A montage of input / output pairs over the \emph{C. elegans} dataset with areas outside the corresponding masks set to zero (from experiment worms-2022-12-09-3, towards the end of training). Each image pair consists of an input image from the test set (left) and corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:worms_2022_12_09_3_montage}
\end{figure}
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_12_09_3_last.png}
\caption{The final predicted structure of the \emph{C. elegans} dataset, when the areas of the volume not under the corresponding mask are set to 0 (from experiment worms-2022-12-09-3).}
\label{img:nope_2022_12_09_3_last}
\end{figure}

We can increase the threshold of the mask cut-off, using two-thirds of the maximum intensity instead of one half. Experiment worms-2022-12-11 increases the threshold and uses the same dataset as experiment worms-2022-12-04 - with the higher background threshold of 303. Figure \ref{img:worms_2022_12_11} shows a montage of result from the test set towards the end of training. Again, the same structure appears as in experiment worms-2022-12-09-3. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_12_11_montage.jpg}
\caption{A montage of input / output pairs when the areas of the volume not under the corresponding mask are set to 0, but with a higher cutoff in the predicted masks (from experiment worms-2022-11, towards the end of training). Each image pair consists of an input image from the test set (left) and corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:worms_2022_12_11}
\end{figure}

The performance of experiments 2022-07-25-3d and 2022-06-22 suggest that predicting pose and sigma alone, providing a structure to be matched is possible in 3D-HOLLy. Starting with an approximation of the neuron structure, similar to that shown in figure \ref{img:worm_simple2}, experiment worms-2022-12-13-2 attempts to map this structure to the input volumes, predicting pose (including anisotropic scale) and output-sigma - using the same dataset as worms-2022-12-04 (increased threshold and number of deconvolution steps). Figure \ref{img:worms_2022_12_13_2_montage} shows results from the test set, towards the end of training. The various poses appear to be well predicted, though the output-sigma is still high.  

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_12_13_2_montage.png}
\caption{A montage of input / output pairs from experiment worms-2022-12-13-2, towards the end of training. Each image pair consists of an input image from the test set (left) and corresponding prediction (right). Each image is a summed projection of the corresponding volume.}
\label{img:worms_2022_12_13_2_montage}
\end{figure}

We performed the same analysis as 2022-08-18-2, using K-Means Clustering to separate out the four neurons, computing the Jaccard index for a range of thresholds. The best threshold is chosen to create the final masks, integrated brightness counts are correlated with the originals.
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\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/nope_2022_12_13_2_thresh.png}
\caption{The mean Jaccard index (blue) and standard deviation (grey) plotted against a threshold value for experiment worms-2022-12-13-2.}
\label{img:nope_2022_12_13_2_thresh}
\end{figure}

Figure \ref{img:nope_2022_12_13_2_thresh} shows the best threshold is approximately 0.033, however the Jaccard index is considerably low, at approximately 0.12. Table \ref{table:wormz_2022_12_13_2_cor} lists the correlations for the integrated brightness between the original and predicted masks. No combination of groups show a strong correlation with a low p-value.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|}
    \hline
    Group Pair & Spearman ASI & P-Value & Spearman ASJ & P-Value \\
    \hline
    0 \& 1 & 0.247 & 0.115 & 0.219 & 0.163 \\
    2 \& 3 & 0.084 & 0.600 & 0.413 & 0.007 \\
    \hline
    0 \& 2 & 0.258 & 0.099 & 0.346 & 0.025 \\
    1 \& 3 & 0.125 & 0.431 & 0.317 & 0.041 \\
    \hline
    0 \& 3 & 0.124 & 0.433 & 0.357 & 0.020 \\
    1 \& 2 & 0.189 & 0.230 & 0.279 & 0.074 \\
    \hline
\end{tabular}
\caption{Spearman correlation and p-values between the original integrated counts and each pair of predicted groups, calculated across the test set from experiment worms-2022-12-13-2.}
\label{table:wormz_2022_12_13_2_cor}
\end{table}

Figure \ref{img:nope_2022_12_13_2_example} shows an example from the test set - the original images and the predictions. While the majority of the original image is encompassed by the prediction, the resulting masks bears little resemblance to the original. 

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/nope_2022_12_13_2_example.png}
\caption{An example from the test set for experiment worms-2022-12-13-2. From left to right: the original image, the original mask, the prediction and the predicted mask. Each image is a sum projection.}
\label{img:nope_2022_12_13_2_example}
\end{figure}

\subsection{Conclusion}
HOLLy manages to recreate the 2D input images from the \emph{C. elegans} dataset, with low Jaccard indices when comparing background to neuron. However, when attempting to separate ASI and ASJ from the background, performance drops considerably. By attempting to converge on a solution in 3D, whilst operating over a 2D dataset with no depth cues, the results are well aligned in the X/Y plane but not in the Z dimension. Subsequent masks do not align well with the originals.

Despite taking advantage of the 3D nature of the \emph{C. elegans} dataset, the performance of 3D-HOLLy is also inferior to U-Net - the predicted structures do not show clear separation between the four neurons. Typically, two small bright areas can be discerned, but the majority of points in the structure fan out towards the extremes of the Z Axis. When we restricted the input images to consider only the masked areas, the resulting structure changed - two large lobes can be seen with some fringing. This result is similar to a number of the 2D results, particularly these with Otsu background subtraction. However, the separate neurons cannot be easily differentiated.

Although 3D approaches do not suffer from the \lq mirroring\rq\ problem described in section \ref{sec:mirroring}, their pose and structure predictions are not as accurate. In particular, the \emph{C. elegans} 2D results show the distinctive four neuron pattern but the 3D-HOLLy results do not. The sum projection to 2D raises the intensity of the areas corresponding to neurons in the input images, resulting in a higher loss if these areas are not represented by the network. Although only increasing by one dimension, the \emph{sparsity} of the data increases considerably. Multiple localisations may appear to occupy the same space in a 2D projection, increasing the size of the computed loss, and therefore the gradients HOLLy operates over. 

Increasing the background threshold and the number of deconvolution steps appears to not change the prediction in any significant way. Using the original mask to set any unmasked pixels to zero results in a structure similar to experiment worms-2022-11-07 - two large clusters extending along the Y Axis - however the separation is less pronounced in the 3D version. This is due to the increased contrast in the 2D images, compared with the 3D volumes. 

3D-HOLLy does not appear to recreate structure correctly, when anisotropic scaling is modelled. Specifically, in experiment 2022-09-01 the difficult areas around the ears of the Stanford Bunny are not well realised. Consequently, the rotation predictions are poor. In section \ref{sec:scaling} we noted that even in the original 2D case, anisotropic scaling is difficult to model. We theorize that the model may not have enough \emph{capacity} to learn the larger number of parameters, may need to train for longer on a larger set, or the hyper-parameters need more investigation. 

The \gls{half-precision} mode  is useful when trying to conserve memory in 3D-HOLLy. However this approach has a tendency towards instability. Several PyTorch functions are not available in this mode, requiring conversion between data-types which may result in approximations, leading to errors such as division-by-zero, causing the program to halt.

\section{Graph based approaches}
\label{sec:graphbased}
The \emph{C. elegans} data presents a number of challenges - one such is the variable level of gene expression and therefore a variable level of light intensity within each neuron in every image. The version of HOLLy designed to recreate structure and pose would move a number of points to compensate for a particularly bright neuron, only to remove them later when it encounters an image with low brightness. This hampers the network's ability to converge on a solution.

However, the  \emph{C. elegans} dataset includes the centre position for each of the four neurons of interest. These centre points are derived from the masks by taking a weighted average of the \gls{voxel}s in the volume that represents the neuron. Rather than attempt to recreate the input \gls{bright-field} image, we can adapt HOLLy to predict the pose - and additionally the scale - of these 4 points. For every input image, a corresponding graph is provided and it is this graph that is compared to HOLLy's output that forms the loss. The loss function is changed to compare the distance between the input graph and a graph transformed by the parameters predicted by HOLLy from the bright-field image. The calculated loss is no longer applied to a set of points that represent the underlying structure of the object in the bright-field image, but only to the neural network. HOLLy now attempts to predict the pose of the graph based on the bright-field image, attempting to creating a correspondence between two separate data, rather than attempting to recreate the input image.

The network architecture remains the same - convolutional layers with two fully connected layers resulting in 6 parameters, representing the translation in three dimensions and an angle-axis representation for the rotation. Later, an additional 3 parameters would be added to model anisotropic scaling.

As before, the input-sigma remains, providing an ever decreasing blur to the input images. As the network no longer rasterises an image for comparison, there is no nedd for an output-sigma.

\subsection{Loss functions}
Two loss functions were considered. The first considers the mean distance between corresponding point pairs (equation \ref{eq:euclidean_loss}). Therefore, the centroid corresponding to ASI-L in the input image will be matched to the corresponding point in the predicted graph. The second loss function considers the distance from a single point in the input to all other points in the predicted graph, taking the lowest score. This second function ignores the significance of the individual centroids.

\begin{equation} \label{eq:euclidean_loss}
    \begin{split}
d(p,q) = \sqrt{(p_x- q_x)^2 + (p_y - q_y)^2+(p_z - q_z)^2 }\\
Loss(v,w) = (d(v_0,w_0) + d(v_1,w_1) + d(v_2,w_2) + d(v_3,w_3)) / 4
    \end{split}
\end{equation}

\subsection{Simulated Data}

As with the early HOLLy experiments, we started with simulated data rather than experimental data, in order to assess the network's capabilities with controlled parameters. Two initial models were chosen - image \ref{img:graph_gt} shows the two models used to generate the input images. One is a rough approximation of the worm neurons - 4 roughly similar \lq egg-like\rq\ shapes in a symmetrical pattern. The second is designed to be an asymmetric shape, but like the first model, has easily identifiable centroids.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/graph_gt.png}
\caption{The two ground-truth 3D models for the simulated input images. The left-hand model is a rough facsimile of the worm neurons. The right-hand model is designed to be as asymmetric as possible but with well defined centroids.}
\label{img:graph_gt}
\end{figure}

The corresponding centroid graphs both have 4 points in a particular order. In the first model, the 4 points are almost planar.

While the solution space is 3D, the input images are 2D projections. In these projections, differing Z (or depth) values do not result in different image - it is impossible for the network to learn an accurate depth position. Therefore in some experiments, we decided to not translate in Z, nor would the network attempt to predict it. Instead, any change in the Z position of an individual point in the graph would be due to rotation alone. 
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\subsection{Simulated results}

The first experiment, 2022-05-04-2, uses many of the same hyper-parameters earlier experiments: a data-set size of 40,000, 40 epochs and 128x128 pixel images. The Euclidean distance that respects the order of the points is used as the loss. Figure \ref{img:2022_05_04_2_pair_montage} shows the output of the network in a similar manner to that of earlier HOLLy experiments, only this time the images are organised into triplets: the rendered input image, a visualisation of the corresponding graph and finally, a visualisation of the network's attempt to pose the graph. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_04_2_pair_montage.jpg}
\caption{A selection of results from the test set of experiment 2022-05-04-2. The images are grouped into triplets; the first image is the input rendering of the ground-truth model. The second image is a visualisation of the ground-truth graph. The final image in the triplet is a visualisation of the predicted graph. Images are in order of training step, from earlier in training at the top-left to later in training at the bottom-right}
\label{img:2022_05_04_2_pair_montage}
\end{figure}

Figure \ref{img:2022_05_04_2_pair_montage} shows some images where the rotation and translation appear correct, however many do not. Figure \ref{img:2022_05_04_2_loss} shows the loss for both the training and test sets reducing over the final two thirds of the training time. This would suggest that the network has managed to improve the pose prediction. However, figure \ref{img:2022_05_04_2_hist} appears to contradict this conclusion, as no clear pattern in the rotation heat-map can be determined. Indeed, if we calculate and plot the entropy as before, we can see that the rather than decrease, the entropy increases at the same time the loss decreases. Figure \ref{img:2022_05_04_2_entropy} shows a plot of the quaternion distance distribution entropy as training continues. The increase in entropy appears to occur at almost the same time as the loss begins to decrease.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_04_2_loss.png}
\caption{A plot of the training loss (in blue) and the test loss (in red) over the course of training in experiment 2022-05-04-2.}
\label{img:2022_05_04_2_loss}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_04_2_hist.png}
\caption{A heatmap of the quaternion distance between the ground-truth rotation and the predicted rotation over the course of training in experiment 2022-05-04-2. The input and predicted rotations are converted to quaternions and the absolute distances are taken. These distances are placed into a histogram and plotted at a set interval during training. The rotations are computed over the test set.}
\label{img:2022_05_04_2_hist}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_04_2_entropy.png}
\caption{A plot of the entropy of figure \ref{img:2022_05_04_2_hist} against the training step.}
\label{img:2022_05_04_2_entropy}
\end{figure}

The loss in experiment 2022-05-04-2 appears to still be decreasing by the time training ends. It is possible that a more optimum solution might be obtained with longer training. Experiment 2022-05-17 ran for 120 epochs, with a different sigma curve (appendix \ref{appendix:input_sigma}), but otherwise the same hyper-parameters as experiment 2022-05-04-2. The sigma curve is altered so that the network spends more time on the less blurred images, and roughly the same time on the highly blurred images as 2022-05-04-2. Figure \ref{img:2022_05_17_loss} shows the loss for this experiment - 2022-05-17. The training loss is highly variable and appears to be decreasing throughout the latter part of training, but the test loss begins to increase. Typically, this is a sign of over-fitting the data or the network \lq memorising\rq\ the input. Figure \ref{img:2022_05_17_pair} shows a selection of predictions over the test set for experiment 2022-05-17. Many of the graphs appear well aligned but many others do not.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_17_loss.png}
\caption{The training loss (blue) and the test loss (red) for experiment 2022-05-17.}
\label{img:2022_05_17_loss}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/2022_05_17_pair.png}
\caption{A selection of results from the test set of experiment 2022-05-17. The images are grouped into triplets; the first image is the input rendering of the ground-truth model. The second image is a visualisation of the ground-truth graph. The final image in the triplet is a visualisation of the predicted graph. Images are in order of training step, from earlier in training at the top-left to later in training at the bottom-right.}
\label{img:2022_05_17_pair}
\end{figure}

Just as in the silhouette approach, we attempted to find a relationship between the bright-field image and a set of co-ordinates. Rather than computing the loss between the image used to train the network and its output, we are attempting to find the loss between the output and a set of co-ordinates the network has not seen. None of the experiments managed to converge. The relationship between an input image or volume and the more abstract representation of four centroids was not accurately reproduced.

\section{Conclusion}
U-Net is the better performer of the two approaches to labelling the \emph{C. elegans} dataset, with a good correspondence between the masks themselves, and the integrated fluorescence counts. While HOLLy can reproduce structure and predict pose, the unique aspects of the \emph{C. elegans} dataset are difficult to model with our deep learning approach. The key reasons include:

\begin{itemize}
    \item Variation in the brightness of each neuron.
    \item The amount of out-of-focus light.
    \item Bright areas that are not the neuron areas of interest, whether innate to the data or introduced via deconvolution.
    \item Variation between each animal.
\end{itemize}

While steps to remove the out-of-focus light and increase the information within the image were attempted, the final masks were not as accurate as these obtained using U-Net. 

Analysis of the dataset identified the difference in brightness early-on. The silhouette approach was an attempt to ignore the differences in brightness but this did not produce adequate results.

Despite these problems, when using 2D projections, separation between neuron and background was comparable to that of U-Net. However, we require a 3D solution in order to obtain accurate integrated fluorescence counts as neurons may be above or below others.

Variation between each animal has not been fully quantified. However, in the attempt to derive an accurate approximation of the structure (section \ref{sec:init_structure}), it was found that the standard deviation of the distances between the neurons was approximately 10\% of the image space (20 pixels in a 200 pixel square image). While such metrics tell us little about the difference in the \emph{shape} of each neuron, it does suggest that the requirement imposed by our model -  that there is a single underlying model for every image - is not met. Modelling anisotropic scale was an attempt to meet this requirement, allowing for some variation in the size of the overall model. Scale was not well predicted in the 3D simulated-data tests - it therefore remains unclear whether scale is enough to account for the variation in the \emph{C. elegans} data.

The graph-based approach attempted to circumvent the problem of varying intensity in the four neurons by defining the loss as the distances between two graphs of the centroids of the neurons, rather than the difference between each pixel of the input and predicted image. This version of HOLLy failed to predict the pose parameters.

\clearpage
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\chapter{Introduction}
\label{chapter:introduction}

Understanding the 3D structure of biological machines is crucial in determining how they function. Knowledge of structure allows the biologist to recognise the same structures in different individuals. With these structures identified, they can be interrogated under different environmental conditions - a systems biology approach to solving key questions in biology.

Structures can be seen at various different scales: from molecules and atoms of amino-acids (roughly 1\si{\angstrom} to 10\si{\angstrom} or 0.1 to 1 nanometres) to human neurons (hundreds of micrometres) to major organs such as the human heart (several centimetres), and can be imaged using a variety of techniques, with fluorescence microscopy being a popular technique for small transparent organisms, single cells, and complexes down to a scale of a few hundred nanometres. Where the dimensions of the structure are smaller, techniques such as cryo-electron microscopy and X-Ray crystallography are necessary to resolve the structure. In the last two decades, super-resolution fluorescence techniques have been developed, which allow imaging between these two length scales. Common to all of these methods is some kind of image or recording, as a 2D projection, a 3D volume, density maps or a list of positions.

Each method has its own advantages and drawbacks. For instance, Cryo-EM cannot be used on living cells, whereas fluorescence microscopy can, but suffers from noise from various sources including \gls{shot noise} and photo-bleaching. Fluorescence microscopy can generate 3D volumes, comprised of individual 2D images in stacks, but often the depth (or Z) resolution is inferior to the X-Y image plane. Simulating this imaging process is relatively easy compared to the complex image rendering of electron microscopy.

We exist in a universe of three physical dimensions; any model of a biological system will benefit from considering all three. However, retrieving accurate 3D structures using various imaging techniques is challenging, particularly as many imaging modalities are two-dimensional. This thesis will show it is possible to recreate a 3D structure from 2D microscopy images using a general, \gls{machine learning} approach. We will also show it is possible to fit a known 3D structure to either a 2D image or 3D volume when the orientation is not known, leading to automatic labeling.

We will show that our approach does not make any assumptions about the structure - such as reliance on templates - making it easier to use and fewer biases towards a particular result. Our approach is general; we support this claim by testing our approach against images taken with different techniques and at different scales.

\section{Structures}

We are interested in discerning 3D structure and automatic labelling across the different scales accessible using fluorescence microscopy, taking advantage of our ability to easily simulate the rendering process to allow less constrained fits. In particular, structures at a lengthscale of a few hundred nm can recur many times in cells, and have become possible to image using new super-resolution fluorescence techniques. With advancements in microscopy, datasets have become available where many instances of a single biological structure are images. We will consider two stereotypical biological structures, the centriole and the nuclear pore complex, for which substantial datasets are now available. 

Existing studies show that the structure of the CEP152 centriole complex (CEP152 labelled) is a torus\citep{siebenMulticolorSingleparticleReconstruction2018}, providing a good benchmark to test our approach against. Two more datasets were available to us: a high-throughput collection of centrioles derived from both human and \emph{Chlamydomonas reinhardtii} cells \citep{mahecicHomogeneousMultifocalExcitation2020b} and a collection of nuclear pores\citep{thevathasanNuclearPoresVersatile2019}. The former was imaged using expansion microscopy with tubulin glutamylation, to a resolution of approximately 35nm. The latter has been imaged with various different imaging modalities as a reference standard.

For fitting known structures to an image or volume, images of specific neurons from the organism \emph{Caenorhabditis elegans} are considered -  more than 1000 times the size of the protein complexes we consider.

Chapter \ref{chapter:worms} of this thesis is concerned with automatic labelling through matching the pose of a known structure to the data we wish to label. The organism \emph{C. elegans} was chosen as a considerable amount of data is available, complete with the corresponding labels, providing a good benchmark to test our approach. This dataset consists of many image stacks, obtained using fluorescence microscopy. The key challenge in this section is to identify the individual neurons in a particular stack, then measure their fluorescence intensity. The neurons in question appear in approximately the same configuration across individuals, forming a structure that we aim to automatically recognise. Increasing the throughput and automatic analysis of such data would immediately benefit fundamental cell biology. However, because fluorescence imaging is used across almost every area of biomedical research, our approach has the potential for very broad impact. Our experiments with the \emph{C. elegans} data are present in Chapter \ref{chapter:worms}.

\section{Microscopy}
Human centrioles and \emph{C. elegans} neurons are tiny biological structures - microscopes are needed in order to make them visible. The field of microscopy encompasses multiple disciplines - from optics to chemistry to computer vision. Several modalities exist, covering a wide variety of equipment and techniques. The technique chosen to generate particular images of a biological target depends on several factors, chief of which is the scale of the objects being investigated.

Many forms of microscopy rely on visible light in various forms - light sheets, lasers and modern lamps. Electron microscopes use a beam of electrons rather than light, whereas scanning probe microscopes use the quantum tunnelling phenomenon to build up a picture of the sample. Super resolution techniques make use of various techniques to exceed the diffraction limit. X-Ray microscopes use electromagnetic radiation in the X-Ray band to produce 3D images, penetrating certain biological materials. Fluorescence microscopy relies on the excitation of a chemical called a \gls{fluorophore}; the light fluorophores emit allows for quantification of certain chemicals and proteins as well as revealing structure.

The data we consider in this thesis was obtained using a small number of different microscopy techniques across two different scales. We focused on fluorescence microscopy - specifically Stochastic Optical Reconstruction (\gls{STORM}), expansion microscopy. 

\subsection{Cryogenic electron microscopy}

Cryogenic electron microscopy (\gls{CryoEM}) is a technique used to reveal macro-molecular structure. It is increasingly becoming a mainstream technology for discerning the shape of cells, protein assemblies and other biological structures of a similar scale (around 1 to 100nm). The sample is frozen using a cryogenic liquid (such as liquid helium or nitrogen), significantly reducing  damage when bombarding the sample with electrons.

The 3D structure of the sample is computed using \emph{Tomography} - where a sample is imaged at different \emph{tilt} angles. These images are recombined to create a 3D volume. Averaging over multiple samples can increase the accuracy of the structures of interest \citep{milneCryoelectronMicroscopyPrimer2013}.

Single-particle CryoEM combines a large number of 2D projection images - taken from many identical copies of the structure being investigated - creating a 3D reconstruction. The key technique enabling the reconstruction is the \emph{Fourier Slice Theorem} which states that any Fourier transform of a 2D projection is a single slice through the 3D Fourier transform of the same structure. Furthermore, the slice is perpendicular to the projection direction. 

The technique for 3D reconstruction taken by most Cryo-EM approaches begins by transforming an image into Fourier space - a \emph{slice} of the final 3D Fourier volume. The angles that position this slice within the space are computed relative to the existing slices by finding \emph{common-lines}. Two lines - one in each image - are identified as being statistically common to both, therefore defining two of the 3 Euler angles that determine the position of the planes relative to each other. A third slice is required that has common lines with both of original two in order to complete the orientation. This technique is known as \emph{Angular Reconstitution}\citep{bendorySingleparticleCryoelectronMicroscopy2020}. There are two drawbacks to this method. Firstly, three pairs of lines must be identified - this identification is significantly affected by noise. Secondly, as the algorithm progresses and more slices are added, errors made earlier in the process can quickly accumulate. One approach to improve the signal to noise ratio is to divide the images into several classes based on their similarity, then take the average of images in each class to produce a \emph{class average}. These averages can improve the signal in a number of ways, depending on the particular algorithm. For example, as a form of template. The design of such a classifier can be quite challenging as the search space for the optimum clustering of hundreds of thousands of images could be prohibitive.

The 3D Fourier transform can be estimated to a certain resolution, depending on the number of projections taken. However the lower frequencies tend to be over-represented, with the higher frequencies under-represented. When the Signal-to-noise ratio is high, estimating where a particular slice should be placed, relative to any other slices becomes impossible \citep{bendorySingleparticleCryoelectronMicroscopy2020}.

The Fourier slice theorem and the angular-reconstitution approach - the  methods commonly employed in CryoEM to recreate 3D structure rely on class averaging or some knowledge of the target, and accurate identification of the common lines in order to provide accurate results \citep{milneCryoelectronMicroscopyPrimer2013}.

As we will discuss later in this chapter and in Chapter \ref{chapter:holly}, our approach is similar in that it too, relies on multiple viewpoints - viewpoints whose parameters are not known. Our method combines a large number of 2D projections to create a 3D structure but the underlying mathematical approach is considerably different. We will revisit Cryo-EM in the concluding chapter where we argue that our approach may indeed be applicable to Cyro-EM.

\subsection{Fluorescence microscopy}
\label{sec:flourescence_microscopy}
Fluorescence microscopy is a broad term that refers to a number of techniques that share the same approach to generating an image - a specific wavelength of light is shone onto a specimen which contains a number of small chemical compounds - fluorophores. When a fluorophore is illuminated by the particular wavelength of light they are designed to react to, they emit light of a longer wavelength. This emitted light is recorded by the microscope using a filter tuned to this particular wavelength. Fluorophores are any fluorescent chemical compound, usually peptides or proteins, organic compounds, synthetic polymers or larger systems. They can be considered  \lq{}dyes\rq{} or \lq{}probes\rq{} as they can attach to specific targets, \emph{labelling} them for detection. 

Fluorescence microscopy is ideal for viewing tissues with sub-cellular resolution in a non-destructive manner. Variations such as \emph{Light-Sheet fluorescence microscopy}(\gls{LSFM}) are particularly suited to imaging deep within transparent tissues, allowing for reconstruction of 3D volumes \citep{santiLightSheetFluorescence2011}.

Fluorescence microscopy has a number of limitations - one such is \emph{photobleaching}. When a fluorophore transitions from a ground state to an excited state when illuminated, it may interact with other molecules - becoming permanently modified and no longer fluorescent. Some fluorophores may bleach quickly whereas others may remain visible for much longer. Lowering the intensity of the light-source can reduce this effect but also reduces the intensity of the resulting signal. Limiting the exposure time is another approach, but this requires a more sensitive optical system. A trade-off must be made to obtain the highest signal-to-noise ratio.

Toxic compounds can be introduced in the specimen when a fluorophore bleaches, particularly if the flurophore is reacting with oxygen. This is referred to as \emph{phototoxicity}. Such \lq reactive oxygen species\rq  can damage the specimen causing, for example, mutations in DNA, rendering proteins non-functional or changing the state of the mitochondia or cell cytoplasm\citep{ichaPhototoxicityLiveFluorescence2017}. 

The process of attaching a dye or antibody to a molecule of interest is called \emph{labelling} (not to be confused with labelling data, discussed in section \ref{sec:labelling}). Antibodies in particular are designed to carry a fluorophore and attach to a particular epitope - a section of a molecule or molecular structure. The specificity of antibodies is a desirable feature, but attaching to a small, specific target limits the number of fluorophores at such a site. Too few fluorophores results in a dim image, with a low signal to noise ratio. In order to increase the number of fluorophores on a target - therefore increasing the brightness - \emph{secondary antibody labelling} can be used. Rather than use one antibody with an attached fluorophore, a primary antibody is used to provide an \emph{anchor-point} for a number of secondary antibodies carrying a fluorophore. While this technique increases the brightness, the distance of the fluorophore from the target can be as much as 30nm \citep{sograte-idrissiCircumventionCommonLabelling2020}. We will return to this \emph{displacement error} in Chapter \ref{chapter:holly}.

\subsection{Point spread function}
\label{sec:intro_psf}
Microscopes that rely on visible light use some form of sensor to detect the light, whether that be the human eye or a sensitive camera. How an illuminated specimen interacts with the imaging system can be described using the \emph{Point spread function}(\gls{PSF}). In a perfect imaging system containing a perfect lens with no aberrations, the point spread function would be dominated by the diffraction of light, producing an \emph{Airy disc} (named after George Biddell Airy in 1835). A point source of light produces a bright, fuzzy central region, surrounded by a series of concentric rings. The size of the Airy disc is given by formula \ref{eq:airy}, where lambda is the wavelength of light and d the size of the aperture in metres.

\begin{equation}
\label{eq:airy}
 \sin \theta \approx 1.22 \frac{\lambda}{d}
\end{equation}

While the object under investigation may be a point source of light (such as a star imaged with a telescope, or a fluorescent bead under a microscope) the resulting image will appear blurred or distorted in a particular way. The PSF is an attempt to model this distortion, in order to recover the underlying point source.

\begin{figure}[H]
\includegraphics[width=12cm]{images/genpsf.png}
\caption{An example of a 3D PSF from the \emph{PSF Generator} program, using the Born and Wolf 3D PSF model \citep{kirshner3DPSFFitting2013a}. The left hand image shows a particular X/Y slice through the 3D volume. The right hand image is orthogonal to the first, showing the view along the Z axis. The colour denotes the intensity of light at that point, with white being the most intense, fading through orange and red to purple being the least intense. The yellow lines are the X and Y axes in the left hand image, and the Z axis and the position of the left-hand image, in the the right hand image.}
\label{img:psfgen}
\end{figure}

PSFs can be modelled in both 2D and 3D. Often, 3D PSFs will show a significant anisotropy; they will be larger in the Z axis than the X or Y axes. This reflects the lower axial resolution often encountered in 3D microscopy techniques (discussed further in section \ref{sec:3d}).

It is popular to model the PSF using a Gaussian - this is the approach we will take in Chapter \ref{chapter:holly}. However, according to \citet{stallingaAccuracyGaussianPoint2010}, using a Gaussian in this manner \say{is not based on the laws of optics} - but a reasonable approximation. Furthermore the authors state that using a Gaussian with a dipole emitter can lead to significant errors. Nevertheless, the Gaussian approximation is still popular as it covers the main lobe of the Airy disc. Crucially, it is also computationally efficient and differentiable.

\citet{kirshner3DPSFFitting2013a} present a 3D PSF based on the Gibson and Lanni model that takes into account a typical microscope setup, where several layers of material exist between the specimen and the imaging plane, such as an immersion fluid and a coverslip. This approach is revisited in Chapter \ref{chapter:worms}, where such a PSF is used to \emph{deconvolve} several images to reduce out-of-focus light.

\subsection{Super-resolution microscopy}
\label{sec:superres_microscopy}
Super-resolution microscopy techniques are so-called as they improve the resolution of the microscope system past the limit of optical microscopes. Even with an otherwise perfect optical setup, light microscopy resolution is limited. The \emph{Abbe Diffraction Limit}, described in 1873 by Ernst Abbe and defined in equation \ref{eq:abbe}, states that any light-based imaging system will have a maximum resolution of approximately half of the wavelength of light used. \textbf{NA} in this case, refers to the \emph{numerical aperture} - a common term in photography, astronomy and microscopy - a dimensionless number that describes the range of angles over which the imaging system can detect light. For typical light microscopy systems (or \emph{widefield} microscopy systems), the resolution is approximately 200 to 300 nanometres.

\begin{equation}
\label{eq:abbe}
d=\frac{ \lambda}{2 n \sin \theta} = \frac{\lambda}{2\mathrm{NA}}
\end{equation}

There are several methods to achieve a higher resolution than the diffraction limit would allow, while still using light. Broadly, there are two main categories of super-resolution: \emph{deterministic} and \emph{stochastic}. Deterministic approaches rely on the characteristics of fluorophores - for example \emph{Stimulated emission depletion microscopy}(STED) uses two laser pulses to excite and de-excite the fluorophores. This second, \emph{suppression} pulse effects areas around the central point of excitation, increasing the resolution to approximately 50nm. 

 Stochastic methods take advantage of the temporal characteristic of fluorophores, trading time for resolution. \emph{Photo Activated Localization Microscopy}(PALM), \emph{Fluorescence Photo-Activation Localization Microscopy}(FPALM), and \emph{Stochastic Optical Reconstruction Microscopy}(STORM) are three such methods with broadly the same approach. As fluorophores may or may not illuminate for different periods of time, it is possible to determine the centroid of a particular fluorophore \emph{flash} using an appropriate PSF, so long as the flash occurred with few (ideally zero) overlapping neighbours.

Figure \ref{img:stormwikipedia} shows the basic steps in \emph{localisation microscopy}. The process involves \emph{fitting} a number of instances of a known PSF to the initial image, in order to find the centre points, thus increasing the detail.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/stormwikipedia.png}
\caption{The broad steps involved in localisation microscopy. From the blurred image on the left, the individual sources are identified using a process that fits a PSF. This PSF is then localised (finding its centre point), resulting in a number of point sources with a resolution greater than the diffraction limit. Image by LeDucdAuge, CC BY-SA 3.0 <\url{https://creativecommons.org/licenses/by-sa/3.}>, via Wikimedia Commons - \url{https://upload.wikimedia.org/wikipedia/commons/2/2b/Concept_IdentificationAndLocalization_pointemitters.png}}
\label{img:stormwikipedia}
\end{figure}

\emph{Super-resolution radial fluctuations}(SRRF)\citep{culleySRRFUniversalLivecell2018a} observes how the radial symmetry of the emitters fluctuate over time. The PSF for the emitter is assumed to be radially symmetric. As noise is not correlated with time, but the radial pattern of the PSF is correlated, the noise can be detected and removed and the centre of the PSF found. The resolution of SRRF approaches 60nm.

\subsubsection{Stochastic Optical Reconstruction Microscopy}
Stochastic Optical Reconstruction Microscopy (STORM)\citep{rustSubdiffractionlimitImagingStochastic2006} is one of the imaging modalities we focus on in this thesis - as such it requires a little more explanation. In their paper, \citet{rustSubdiffractionlimitImagingStochastic2006} show STORM can achieve around 20nm resolution - the same size as a modern NAND gate in modern computer memory storage, or roughly the width of ATP-Synthase.

 STORM is able to achieve a very high resolution due to its use of high photon yield organic fluorophores. These fluorescent emitters are activated stochastically across time, resulting in a number of images more sparsely populated with emissions. This makes the identification step (in figure \ref{img:stormwikipedia}) more accurate, at the cost of the extra time needed. \citet{rustSubdiffractionlimitImagingStochastic2006} use two fluorescent Cyanine based dyes: Cy5 and Cy3. A strong red laser pulse turns all the fluorophores to an \emph{off} state. A short green laser pulse turns a random number of the Cy5 fluorophores to the \emph{on} state, whereupon a second smaller red laser pulse will cause them to emit.
 
 \begin{figure}[H]
\includegraphics[width=16cm]{images/dstorm.png}
\caption{The various steps involved in dSTORM. a) The image to be processed - DNA labelled with Cy5. Simultaneous excitation with red light (647nm) and green light (514nm). The switching rate constants $k_{on}$ and $k_{off}$ of Cy5 attached to DNA as a function of laser power. d) a closeup of a typical Cy5 emmission. e) A number of such emissions, localised using a Gaussian PSF, the centroids plotted with a cross. f). A plot of localisations from 50 Cy5-DNA molecules. The FWHM and spatial resolution is 21nm. From \citet{heilemannSubdiffractionResolutionFluorescenceImaging2008}.}
\label{img:dstorm}
\end{figure}

\emph{Direct-STORM}(dSTORM)\citep{heilemannSubdiffractionResolutionFluorescenceImaging2008} removes the need for two fluorophores at a specific proximity - it works \emph{directly} on a single fluorophore without the need for an \lq activator fluorophore\rq . Figure \ref{img:dstorm} illustrates the broad steps of dSTORM and the resulting resolution that can be obtained.

The amount of time taken to acquire and process the data depends on the algorithm chosen and the sample itself, but can take anywhere from seconds to minutes which limits the ability of STORM to capture some fast biological processes \citep{nehmeDeepSTORMSuperresolutionSinglemolecule2018a}. Having fewer emitters per frame makes localisation easier, but more frames are required, increasing the time taken to obtain an adequate result. Newer algorithms such as Haar wavelet kernel (HAWK) analysis \citep{marshArtifactfreeHighdensityLocalization2018} allow for denser emitter conditions.

Several different approaches to identifying the individual fluorophores exist, with the difficulty being separating these emitters which overlap. \citet{gordonSinglemoleculeHighresolutionImaging2004} use the photo-bleaching event to separate two emitters based on the drop in intensity. \citet{huangSimultaneousMultipleemitterFitting2011} present a method using a maximum likelihood estimator (\gls{MLE}), improved upon iteratively using the Newton-Raphson method, implemented on a \gls{GPU} for speed. Regardless of which method is chosen, the result is a set of positions in the X-Y plane, often with a count of the photons that contributed to the PSF and some confidence measure that the localisation is correct.

STORM results often take the format of a list of locations of each identified fluorophore, its intensity and a certainty. These localisations can be formed back into a super-resolution image by plotting each point using a particular PSF (often a Gaussian). This is the process we model in our approach in Chapter \ref{chapter:holly}.

\subsection{3D Microscopy}
\label{sec:3d}
At the beginning of this chapter, we stated that biological structures are 3D, yet many of the imaging modalities discussed so far are 2D. Several techniques exist that expand microscopy into the third dimension.

Wide-field flourescence microscopy can incorporate a moving \emph{Z stage}, passing the focal plane through the sample. STORM microscopy may use astigmatism to alter the point-spread function, encoding information about the Z position in the point-spread function. \gls{LSFM} is similar but uses a single plane of illumination, directed at an oblique angle to the detector.

Resolution in the Z axis tends to be worse than in the X-Y imaging plane. \citet{jonesFastThreedimensionalSuperresolution2011} reports a resolution of ~30nm in the main imaging plane, but ~50nm in the Z axis. More recently \citet{heydarian3DParticleAveraging2021} report that in 3D localisation microscopy, the uncertainty of the Z / Axial resolution is 2 to 4 times worse than in the X-Y plane, but they go on to state that in their data, this effect \lq did not play a role\rq\ in their experiment results.

A number of reasons for this problem exist, some depending on the imaging modality chosen. \citet{macias-garzaMissingConeProblem1988} states that any finite aperture will result in the \emph{missing cone problem}. A biconic region of space, aligned with the optical axis will show a loss of frequencies in the \lq 3-D Fourier spectrum of the optical density\rq, reducing the resolution in the Z axis. 

Confocal microscopy uses a pinhole and a point-source illumination to \emph{scan} across a sample in three dimensions. As the depth of field in a typical microscope is very narrow, and many specimens in biology are transparent, one can focus on a particular axial plane, obtaining a \emph{stack} of 2D images, forming a 3D volume. 

Techniques have been developed to improve depth accuracy. 4Pi Microscopy is variant of fluorescence microscopy, using two lenses and two paths for the light. This improves the axial resolution by 4 to 7 times that of confocal microscopy \citep{bewersdorf4PiMicroscopy2006}. In \gls{LSFM} a narrower sheet of light allows for higher accuracy in Z \citep{remachaHowDefineOptimize2020}, but the axial resolution is still lower than in the X/Y plane \citep{engelbrechtResolutionEnhancementLightsheetbased2006}. \citet{remachaHowDefineOptimize2020} introduce a set of measures that help to define this relationship between light sheet thickness, numerical aperture and axial resolution. 


Super-resolution techniques also generally have anisotropic resolution \citep{schermellehGuideSuperresolutionFluorescence2010a}. In STORM microscopy, \citet{huangThreedimensionalSuperresolutionImaging2008} use optical astigmatism to determine the 3D position of each fluorophore, achieving 20 to 30nm resolution in the lateral dimensions, with 50 to 60 nm along the Z axis. 

Recently, \emph{\gls{deep learning}} approaches to improving the Z axis resolution have been explored (deep learning is discussed in greater detail in section \ref{sec:ai}). \citet{weigertContentAwareImageRestoration2018} propose a \lq content-aware\rq\ reconstruction approach - a neural network is trained to a specific dataset, using computationally derived noisy images from ground-truth images. The resulting network \emph{denoises} previously unseen images, improving the axial resolution. 

\emph{Multi-focus Microscopy}(MFM) records multiple focal planes simultaneously by splitting the light paths and using multiple sensors \citep{abrahamssonFastSensitiveMulticolor2013}. Z resolution is still less than in the X / Y plane. As the light is split, the illumination on each layer is lower than the equivalent 2D wide-field microscope.

\emph{Enhanced SRRF}(eSRRF)\citep{henriquesHighfidelity3DLivecell2022} builds on SRRF by measuring the radial gradients for a particular voxel instead of pixel (3D instead of 2D). Vectors are measured for a ring of voxels around a particular voxel, and the convergence of these vectors determined, with high convergence achieved when the vectors all \emph{point} towards the central voxel. Applying eSRRF to a 3D volume acquired using MFM, the authors are able to resolve sub-diffraction limited structures within the mitochondrial network of living cells.

Any technique that attempts to obtain a structure directly from a 3D image volume will need to contend with this anisotropic resolution. It might be possible for a technique that derives structure from a number of 2D images to out-perform one that recovers structure from a 3D volume.

\section{The Structure Challenge}
We highlighted why we want to know about structure, some methods of obtaining that structure and why it can be challenging. Microscopy is our area of focus, discerning structures on the scale of hundreds of nanometres (protein complexes) to tens of microns (\emph{C. elegans neurons}). Difficulties arise from:

\begin{itemize}
  \item Various sources of noise, such as naturally fluorescent tissues.
  \item Experimental constraints (such as the sample needing to be alive).
  \item Access to only 2D images or 3D volumes with anisotropic resolution.
  \item A dataset with a small number of different viewpoints.
  \item Datasets where the individual specimens are heterogeneous in structure.
\end{itemize}

\subsection{Structure from 2D sources}
The previous section discussed the advantages and challenges of 3D microscopy. It is not always possible to obtain a suitable 3D volume due to accuracy, equipment, or correctly isolating the target structure. However, there are a number of techniques that can derive 3D structure from 2D sources.

\citet{szymborskaNuclearPoreScaffold2013} use super resolution microscopy techniques to create a large set of images of the nuclear pore scaffold structure, aligning and summing the best images of the scaffold. The resulting image (generated from 8698 images) shows the torus like structure with varying radii. The alignment step used to generate the average relies on the symmetric nature of the structure.

\citet{salasAngularReconstitutionbased3D2017a} present a method of 3D reconstruction from 2D super resolution projections using \emph{angular reconstitution}\citep{vanheelAngularReconstitutionPosteriori1987}. Their method is reference free, has isotropic resolution and does not require knowledge of the relative angles of the projections. They demonstrate the applicability of the method by solving the structures of DNA Origami and a number of simulated, large protein complexes. Angular reconstitution is based on the  same technique used in Electron Microscopy - finding common line projections between two, 2D images. A minimum of three images are required to derive an asymmetric 3D structure; ideally these 3 projections should be as close to the axial views as possible\citep{vossToolboxInitio3D2010}. The subsequent class groups are averaged in order to increase the signal-to-noise ratio. Initial 3D models can be derived from these \emph{class averages} then \emph{fed back} - re-projected back into 2D and used to improve the initial alignments and class groupings. These processes of averaging, re-projection and feedback imply that any errors may propagate through to the final result, assuming the common lines between projections are found. The final accuracy of the 3D structure is limited by the averaging steps and the quality of the alignments. Angular reconstitution is particularly effective on symmetrical objects though \citet{salasAngularReconstitutionbased3D2017a} show that non-symmetrical objects can also be reconstructed

\citet{siebenMulticolorSingleparticleReconstruction2018} use the program Scipion\footnote{\url{http://scipion.i2pc.es/}} to recreate the human centriole and procentriole complex, by using the Fourier space version of the common-line, angular reconstitution algorithm with symmetry. Going a step further, the authors identify the different components of the various complexes by combining multi-colour images.


Techniques from CryoEM have recently been applied to larger scales with fluorescence microscopy but the difficulties of obtaining accurate results remain\citep{salasAngularReconstitutionbased3D2017a}. Using astigmatism with STORM can produce 3D localisations but with anisotropic accuracy. A number of microscopy techniques can image directly in 3D, but require specific hardware. 

Is it possible to derive 3D structure from 2D images, at multiple scales, with no prior knowledge of the sample, under noisy conditions; a general approach that attempts to learn the structure and pose of an object under a microscope, without relying on class averages and recognition of common lines? In the next section we will investigate the role computer vision and image processing play in microscopy, how Artificial Intelligence and Deep Learning have altered the field and how both approaches might have answers to this structure challenge.

\section{Computer vision and image processing}
The field of computer vision is concerned with replicating certain aspects of human visual perception with a machine. Examples include creating a 3D model of a scene from a series of 2D images, counting the number of animals in a picture, or recognising all the straight edges in an image under different conditions. 

According to \citet{szeliskiComputerVision2011}, computer vision is incredibly difficult to achieve - \say{Why is vision so difficult? In part, it is because vision is an inverse problem, in which we seek to recover some unknowns given insufficient information to fully specify the solution}. They differentiate between \emph{forward} and \emph{inverse} problems in vision; forward models are derived largely from physics and involve modelling the way light interacts with the world and a camera (or eye). Computer vision often attempts to do the inverse - describing the world given a particular \emph{vision} of it.

Computer vision is a multidisciplinary area - from optics and solid state physics to signal processing to neurobiology. The topics of research within the field have changed since the 1970s to today. Broadly speaking, computer vision began as a step on the road to artificial intelligence by \say{solving the visual input problem}\citep{szeliskiComputerVision2011}. This led to a desire to describe the world in 3D from 2D input. In the 1980s more mathematical techniques for quantitative image analysis appeared, such as edge detection, shape from shading and Markov Random Field models. As the next decade arrived, multi-view stereo reconstruction, face tracking and image segmentation made advances (among others). By the 2000s computer graphics and computer vision has been interacting for sometime, with the idea of manipulating and morphing real-word imagery. More recently, the computer vision field has been radically shifted by the resurgence of \gls{artificial intelligence}, specifically \gls{deep learning} and \gls{machine learning}.

\subsection{In microscopy}
\label{sec:vision_microscopy}
Computer vision, signal and image processing are often used to improve the quality of microscopy images alongside hardware solutions. Typically, these techniques are employed to improve the signal-to-noise ratio, remove any aberrations caused by imperfections in the microscope apparatus, or otherwise increase the amount and accuracy of information obtained from an image or set of images. There are many examples of computer vision and signal analysis techniques in use within the microscopy and biology fields, therefore we focus on these that are the most relevant to this thesis.

Deconvolution is an image (or signal) processing technique often used in microscopy to improve the signal-to-noise ratio by reducing the effects of out-of-focus light. A deconvolution algorithm typically makes use of a \emph{kernel} based on the inverse PSF of the microscope setup in question. The Richardson-Lucy algorithm is one such well-known algorithm\citep{richardsonBayesianBasedIterativeMethod1972} (we utilise this technique in Chapter \ref{chapter:worms}). Some approaches do not require a known PSF, and are known as \emph{blind deconvolution} algorithms \citep{fishBlindDeconvolutionMeans1995}.

\begin{figure}[H]
\includegraphics[width=16cm]{images/deconv_example.png}
\caption{An example of deconvolution microscopy. The left is a maximum intensity projection of HeLa cells labeled for p150 (green), centromeres (red) and DNA (blue). The middle top image shows a 3D surface rendering of the box-out in the left image. The right hand images show the same data but with a deconvolution applied. Taken from \citet{sibaritaDeconvolutionMicroscopy2005a}).}
\label{img:deconv_example}
\end{figure}

\citet{zhanAutomatedProcessingImaging2015} use Niblack thresholding and two Support Vector Machines(\gls{SVM}s) to extract the useful features that can identify the head (as well as neurons of interest) of \emph{C. elegans} - from a bright-field image.

Watershed algorithms - such as the Priority Flood \cite{barnesPriorityFloodOptimalDepressionFilling2014} - have been used to segment and track cells automatically over time \citep{yangNucleiSegmentationUsing2006} (Image segmentation is covered further in section \ref{sec:labelling}). Watershed algorithms are metaphorically named after the geological watershed - high areas of land that separate drainage basins. Figure \ref{img:watershed_example} shows the basic steps and result of a typical watershed algorithm applied to a greyscale image.

\begin{figure}[H]
\includegraphics[width=14cm]{images/watershed.png}
\caption{An example of a watershed algorithm applied to a greyscale image. (a): the original image, (b): processed image selecting the areas that comprise the minima and maxima, (c) the resulting watershed \emph{ridge lines}, (d) superposition with the original image. Taken from \citet{couprieTopologicalGrayscaleWatershed1997}.}
\label{img:watershed_example}
\end{figure}

Multiple algorithms and techniques may be employed at once. \citet{orlovComputerVisionMicroscopy2007} present an approach that aims to automatically classify and measure the similarity between various microscopy images by extracting a number of different features via an appropriate computer vision algorithm. They include Tamura features (constrast, coarseness and directionality)\citep{tamuraTexturalFeaturesCorresponding1978}, features based on Gabor Wavelets\citep{grigorescuComparisonTextureFeatures2002} and several others. These features form the basis for a machine learning based classifier, discussed in section \ref{sec:ai}.

\clearpage

\subsection{In 3D reconstruction}
Creating a 3D representation of the world from 2D projections has long concerned computer vision researchers. Structure from motion, stereo correspondence, shape from shading, photogrammetry and structured light are just some of the techniques in common use - described in a number of introductory text books on computer vision \citep{daviesComputerMachineVision2012}\citep{szeliskiComputerVision2011}\citep{princeComputerVisionModels2012}. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/structureFromMotion.png}
\caption{An example of 3D reconstruction using 3 cameras / camera positions. The object points $P_j$ is recognised by the three cameras  $P_{j,k}$. By knowing the parameters of the camera projections, a set of equations that describe the potential 3D positions of the recongised points can be constructed, then solved. Taken from \url{https://openmvg.readthedocs.io/en/latest/_images/structureFromMotion.png}}
\label{img:photorecon}
\end{figure}

Many of these techniques, in particular photogrammetry, rely on recognising a large number of features, a minimum number of which must be common to pairs of images throughout the set. These features are used to reconstruct the projection parameters for each image, positioning each relative to one another. The 3D position of the pixels in each image can then be determined. Multiple cameras, or a single moving camera can be used for this purpose. A basic overview of the process is shown in figure \ref{img:photorecon}. By knowing the camera projection parameters, a point in an image ($P_{j,k}$) can be placed along a 3D line extending along the depth axis through the image. By finding multiple lines from the different camera views, the actual point in world space ($P_j$) can be determined by finding the position where these lines cross. In practice, such lines will never cross perfectly at a single point, therefore some method of optimisation is required.


Despite its success at modelling human scale (and larger) objects, photogrammetry is not suitable for our purposes. Images from STORM and Fluorescence microscopy are homogeneous over a larger range of distances, and at different scales than these images typically suited to photogrammetry. The pixel values may change smoothly, and certain macro objects are difficult to differentiate from one another. While the technique is mathematically different from the Fourier-slice based approach, the problem of recognising a common line is similar to recognising a common feature. There may be several areas in a particular image that appear similar enough to an area in another image, resulting in a number of possible common points.

Recently, the area of computer vision has been radically transformed by the resurgence of artificial intelligence - in particular \emph{deep learning}. The next section will consider how such techniques might solve our structure problem. 

\clearpage

\section{Artificial intelligence,  machine learning and artificial neural networks.}
\label{sec:ai}
Artificial intelligence is the field of study that aims to build a machine that exhibits intelligence or rationality. The term \emph{machine learning} is often used interchangeably with \emph{artificial intelligence} but can be considered a related field - how a machine may learn or improve its performance on a particular task. Artificial neural networks are one approach that spans both fields and is the main technique we consider in this thesis.

Machine learning can be divided into a number of broad approaches: supervised, unsupervised and reinforcement learning. Supervised learning takes a mathematical model and a set of input data and the desired outputs. The model is iteratively \emph{trained} on this data, optimising a particular function that describes how well the network has reproduced the desired outputs. Unsupervised learning takes a set of data with no labels (or any assumptions of any kind) and attempts to discern groups or commonalities within the data. Reinforcement learning is mostly concerned with how an agent might take actions within an environment in order to maximise a reward.

Several kinds of model are common in machine learning such as \emph{Decision Trees}, \emph{Support Vector Machines}(\gls{SVM}), \emph{Bayesian Networks}, and \emph{genetic algorithms}. However, this thesis is concerned with \emph{Artificial Neural Networks}(\gls{ANN}) and more specifically \emph{\gls{deep learning}}. Our reason for this focus is that deep learning has been shown to be very successful in problem areas similar to ours.

ANNs are \emph{inspired} by the biological brain (human or otherwise). The history of ANNs is long, dating back to approximately 1943. Since that time, the field has gone through phases of dormancy and breakthroughs. Neuroscience and biological models of the brain have greatly influenced many of these breakthroughs (it is important to note that the influence is broadly one-way; such ANNs are \emph{not} accurate models of the human-brain \citep{goodfellowDeepLearning2016}). ANNs have enjoyed recent success in many fields - from all branches of science, to the humanities.

Figure \ref{img:single_ann} describes a single layer of a neural network. Typical ANNs have a number of layers, depending on the problem space. The layers between the input and output are referred to as \emph{hidden-layers}. Each \emph{artificial-neuron} within the ANN takes a number of weighted-inputs. These weights are passed through a \emph{non-linear activation function}, often with a \emph{bias} being added. The resulting output is passed to the next layer- such a network is also known as a \emph{feed-forward} network. A layer of neurons connected in this way is referred to as a \emph{fully-connected layer}. An ANN \emph{learns} by comparing the output with the desired result for a particular input. This comparison results in a \emph{loss} - a value that is then \emph{back-propagated} through the network, updating the weights. The back-propagation algorithm itself generates a set of gradients - the derivatives of each neuron and its activation function (and any other functions that may be used in the final model). Once the gradients have been computed, the weights and biases can be updated using one of a number of optimisation algorithms such as Stochastic Gradient Descent (\gls{SGD}).

\begin{figure}[H]
\centering
\includegraphics[width=10cm]{images/Single_layer_ann.svg.png}
\caption{A single layer from an artificial neural network. The circles represent individual neurons (of which there can be any number). The arrows marked \textbf{b} are the biases, \textbf{w}  the weights, \textbf{x}  the inputs and \textbf{y} the outputs. Image from Mcstrother, CC BY 3.0 \url{https://creativecommons.org/licenses/by/3.0}, via Wikimedia Commons - \url{https://commons.wikimedia.org/wiki/File:Single_layer_ann.svg}}
\label{img:single_ann}
\end{figure}

Feed-forward, ANNs are \emph{universal function approximators}; that is an ANN can approximate any continuous function from one Euclidean space to another, with a sufficient number of hidden layers\citep{hornikMultilayerFeedforwardNetworks1989}.


Deep learning is, at the time of writing, one of the most popular machine learning techniques. Deep learning approaches rely on multiple layers - one-after-another - that progressively extract higher level features from the data. Deep learning takes inspiration from the human visual system, but also from fields such as linear algebra, numerical optimisation and information theory. The popularity of deep learning can be attributed to the generality of the approach - its effectiveness at solving not only computer vision problems, but many other challenges such as automated drug discovery, recommendation systems and speech recognition\citet{parloff2016WhyDeep2016}. The computational power required to train ANNs in a reasonable time used to be a significant barrier to adoption, but newer hardware and the algorithms to take advantage of the hardware has largely removed this problem. The availability of large datasets - \emph{big data} and ever increasing computational power, particularly with \gls{GPU}s, has fuelled the rise of deep learning \citep{aggarwalNeuralNetworksDeep2018}.

\subsubsection{Deep learning in Computer Vision}
Deep learning has revolutionised computer vision. Many computer vision algorithms attempt to recover features from images that a human has decided may be important. It can be argued that deep learning is better at extracting the most useful features, therefore achieving what some have called \say{super-human performance} \citep{voulodimosDeepLearningComputer2018}\citep{walshDeepLearningVs2019}. Deep learning techniques have considerably outperformed traditional computer vision techniques, particularly in image classification and object detection \cite{walshDeepLearningVs2019}.

Figure \ref{img:dlcompare} shows a Google Trends graph, comparing the terms \emph{computer visionY } and \emph{deep learning} from 2004 to the present. A rise in the popularity of deep learning can be seen beginning around 2013, shortly after a deep learning system by \citet{krizhevskyImageNetClassificationDeep2017} won the ImageNet contest\citep{parloff2016WhyDeep2016}. Since that time, the interest in deep learning has increased significantly.

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/compare.png}
\caption{A Google Trends graph, showing the rise in popularity of the search terms \emph{computer vision} (in blue) and \emph{deep learning} (in red).}
\label{img:dlcompare}
\end{figure}


\subsubsection{Convolutional Neural Networks}

\emph{Convolutional neural networks} (\gls{CNN}s) are one of the most popular deep-learning approaches. A CNN contains multiple \emph{convolutional} layers, and usually a smaller number of fully-connected layers. Each layer is connected one after the other, forming a chain. In a convolutional layer, rather than connect every neuron to every input, each neuron has a small \emph{receptive field}. For example, if the input to a CNN is a 128 x 128 pixel image, the neurons of the first layer may only consider a patch of 5 x 5 pixels at any one time. These neurons are moved across the input - \emph{convolved} - creating a number of \emph{feature maps}. These maps are passed as the input to the next layer. Depending on the problem being attempted, a fully connected layer might be the last layer, connecting to all the final feature maps and reducing the input down to a specific size.

The convolution operation is defined by equation \ref{eq:convolution}. The function \lq f\rq\ represents our input and \lq g\rq\ the \emph{kernel}. At each convolution step, the single output is computed by integrating the results of each value in the kernel multiplied by the corresponding value in the input. Figure \ref{img:convop} shows the basic principle. The kernel is set to a specific size - the neurons receptive field. The values of the filter are the weights we wish to learn. As we are convolving a kernel across a map, the subsequent feature maps will be smaller than the input maps, particularly if we move the kernel more than one data-point across the feature map at a time (known as the \emph{stride}). In addition, the tendency is to create more feature maps as layers continue, therefore successive layers become \emph{narrower} and \emph{deeper}, hence the name \lq deep learning\rq. Often, such convolutional networks are referred to as \emph{Deep Neural Networks}(\gls{DNN}s).

\begin{equation} \label{eq:convolution}
(f * g)(t) := \int_{-\infty}^\infty f(\tau) g(t - \tau) \, d\tau.
\end{equation}

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/Convolution-operation.png}
\caption{A simplified view of the convolution operation. The kernel of size 3 x 3 contains only 2 values, 4 and -4. When placed at the starting position as shown, 8 of multiplications of the kernel with the input return zero. The ninth returns -8, therefore the integration of the kernel is -8. Note that this value is placed in the top-left of a feature map slightly smaller than the input.. Image taken from \emph{PassNet - Country Identification by Classifying Passport Cover Using Deep Convolutional Neural Networks} - Scientific Figure on ResearchGate. Available from: \url{https://www.researchgate.net/figure/Convolution-operation_fig1_330880103}
}
\label{img:convop}
\end{figure}

Figure \ref{img:basiccnn} describes a very basic CNN. It contains 3 convolutional layers and 2 fully connected layers. It also contains a key feature of CNNs - 2 \emph{drop-out} layers, shown in purple. Typically, such a layer is placed after every convolution. One of the more popular drop-out layers is the \emph{max-pool} layer \citep{skansiIntroductionDeepLearning2018}. Rather than allowing all the values from the previous feature maps to pass through to the next layer, the largest value from a window is kept and all other discarded. This window is typically 2 x 2 in size, effectively reducing the dimensions of the feature map in half. The results of applying a 2 x 2 \emph{MaxPool} to the feature maps are shown in figure \ref{img:basiccnn} as the purple sections.

The orange sections can be thought of as the \emph{feature extraction} part of the network, whereas these in green form the \emph{classifier}. The goal of the feature extraction section is to detect the salient information in the image, disregarding the rest. A well trained network should contain a number of feature maps, each of which are sensitive to a \emph{particular feature} of the input and crucially at a \emph{particular scale}.

\begin{figure}[H]
\centering
\includegraphics[width=16cm]{images/basiccnn.png}
\caption{A simple CNN, containing 3 convolutional layers (the red operation), 2 maxpool layers (the resulting feature maps are in purple) and two fully connected layers (in green). The convolutions slightly reduce the input image, but create an increasing number of feature maps. The final feature maps are all connected to the first layer of the fully connected ANN through a flatten operation. This network is designed to \emph{look} at an image and decide whether it belongs to class A or class B. All sizes are in pixels.}
\label{img:basiccnn}
\end{figure}

We focus on deep learning instead of other machine-learning techniques as its success in learning non-linear problems, particularly in computer vision, is unparalleled \citep{parloff2016WhyDeep2016}. Chapter \ref{chapter:holly} expands further on the CNN used in this thesis.

\subsubsection{Activation functions}
Section \ref{sec:ai} mentioned that the weighted inputs from a neuron pass through a \emph{non-linear activation function}, giving the final output. These functions are one of the key features that separates deep learning from linear regression models, \emph{Support Vector Machines} (SVMs) (\emph{kernel trick} not withstanding) and other machine learning approaches. As a result, the loss between the expected and predicted output becomes \emph{non-convex}, resulting in a system that cannot provide any guarantees that the best result has been reached - a \emph{global convergence} \citep{goodfellowDeepLearning2016}. Therefore, DNNs are trained using iterative, stochastic gradient descent techniques and are sensitive to initial conditions. Despite these problems, non-linearity is highly desirable as many problems in the real world we might wish to solve are non-linear.

A common, non-linear activation function is the \emph{Rectified Linear Unit}(\gls{ReLU}). This function was shown to be more effective than other activation functions in multi-layer ANNs\citep{glorotDeepSparseRectifier2011}. Figure \ref{img:relu} shows the input and corresponding output for the ReLU. 

\clearpage

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/ReLU.png}
\caption{The ReLU activation function. Image from \url{https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html}.}
\label{img:relu}
\end{figure}

Several other non-linear functions have found use in deep learning such as \emph{tanh}, the \emph{Leaky-ReLU} \citep{aggarwalNeuralNetworksDeep2018} (see Chapter \ref{chapter:holly}) and \emph{SoftPlus} (see Chapter \ref{chapter:worms}), among several others.

\subsubsection{Other architectures}
The CNN is one of a number of models in the deep learning field - several architectures have been developed for specific problems, including several in the microscopy field.

\emph{Encoder-decoder} networks use convolutional layers to reduce an input to its salient features, just like a CNN. Rather than use fully connected layers to generate the final output, they use a set of \emph{up-scaling} layers to create an output with the same dimensions as the input. The salient features are known as the \gls{latent space} - an embedding of items within a manifold, where items that are deemed more related to one another are closer together when measured within the space. 
Chapter \ref{chapter:worms} introduces U-Net - an architecture that expands on the encoder-decoder by including \emph{cross-links}. This architecture is in wide use, particularly in medical and biological settings where it has proved invaluable in segmentation and labelling.

\emph{Recurrent neural networks}(RNNs) differ from feed-forward networks as they contain feedback loops. They are especially useful when learning time-series data. and are best exemplified by \emph{Long-term Short-term}(LSTM)\citep{hochreiterLongShortTermMemory1997} and \emph{Gated Recurrent Unit}(GRU) based networks \citep{choPropertiesNeuralMachine2014}. 

A \emph{Generative Adversarial Network} (\gls{GAN})\citep{goodfellowGenerativeAdversarialNets2014} is a combination of two networks - the \emph{generator} and the \emph{discriminator}. The discriminator estimates the probability that a particular datum came from the training set or from the generator. The generator attempts to maximise the probability the discriminator will make a mistakes. In effect, the two networks attempt to outperform each other. CryoGAN uses a GAN in combination with a \say{Cryo-EM physics simulator} to determine structure and pose in CyroEM experiments \citep{guptaCryoGANNewReconstruction2020}.

\emph{Graph convolutional networks}\citep{wuSimplifyingGraphConvolutional2019b}(discussed in Chapter \ref{chapter:conclusion}) are CNNs optimised to work on graphs instead of images.

The \emph{Transformer} network \citep{vaswaniAttentionAllYou2017a} has become popular in computer vision and natural language processing tasks, previously dominated by RNNs and LSTMs. Transformers rely on a machine learning technique called \emph{attention} - paying more attention to certain parts of that data than others. Transformer networks look at an entire sequence of data in one pass - unlike RNNs - using many \emph{multi-headed} attention units at once.

\subsection{Deep and machine learning in microscopy}
\label{sec:deepmicro}

Various machine learning approaches are in use in microscopy. \citet{liuSurveyApplicationsDeep2021a} review a broad number of deep learning techniques, categorising each as either \emph{classification, segmentation, tracking} or \emph{reconstruction}. Reconstruction in this context is concerned with image reconstruction, removing noise, and optimising imaging parameters, rather than sample reconstruction. Deep learning for segmentation and labelling forms a key part of Chapter \ref{chapter:worms}.

\citet{bergIlastikInteractiveMachine2019} present \emph{ilastik}, a program that performs segmentation, counting and cell tracking using a variety of machine learning methods.

\citet{zelgerThreedimensionalLocalizationMicroscopy2018} use a CNN instead of \gls{MLE} to fit a \gls{PSF} to a number of \gls{SMLM} images, showing that such a network can compare favourably with MLE.

Deep-STORM\citep{nehmeDeepSTORMSuperresolutionSinglemolecule2018a} replaces the MLE approach with an encoder-decoder network, taking the raw, \lq diffraction limited\rq image and producing a super resolved image. This method is parameter free (in terms of the underlying data - hyper-parameters might still require tuning) and is particularly fast. Deep-STORM is general, and like the method we present in this thesis, is not dependent on any prior knowledge of the structure in the images. 
 
 DeepLoco\citep{boydDeepLocoFast3D2018a} uses a CNN to perform SMLM, replacing the MLE approaches used in STORM. The localisation performance is increased by several orders of magnitude - \lq 20000-frame experimental 3D SMLM dataset in about one second\rq.

 \citet{belthangadyApplicationsPromisesPitfalls2019} describe how deep learning has been applied to fluorescence image reconstruction. Broadly, these approaches include enhancements to existing techniques such as Deep-STORM\citep{nehmeDeepSTORMSuperresolutionSinglemolecule2018a} and ANNA-PALM\citep{ouyangDeepLearningMassively2018b}, improving deconvolution, reducing noise\citep{krullNoise2VoidLearningDenoising2019} and improving axial sampling. The review points out the various \lq pitfalls\rq\ that many approaches may fall into. While deep learning approaches may outperform more classical techniques, such techniques are often derived from \lq first principles formulated as explicit analytical models instead of being trained from data\rq. Such methods inherently generalise well whereas deep learning approaches may not. 

\citet{weigertContentAwareImageRestoration2018} introduce \emph{Content Aware Restoration (CARE)} - a neural network that uses synthetic data, made to resemble the data being interrogated, as its training set. The authors present the results of applying CARE in order to \emph{denoise} fluorescence microscopy images with low signal-to-noise. More relevant to this thesis - they go on to show that CARE can improve the axial resolution of 3D volumes by generating a dataset of \emph{semi-synthetic} images - so called as the images are extracted from the X/Y plane of a volume, then blurred with a realistic PSF that closely matches the axial blur. Training on these blurred and un-blurred pairs, produces a network capable of \emph{unblurring} in the Z axis. The authors claim that \say{10-fold fewer slices} are required to obtain acceptable axial resolution.
 
\subsection{Deep learning in 3D reconstruction}

Many researchers have presented results in applying deep learning to 3D reconstruction. \citet{hanImagebased3DObject2019} present an overview of 3D reconstruction from one or multiple images, highlighting some broad techniques such as \emph{volumetric}, \emph{point-based}, \emph{deformation-based}, and \emph{intermediation} approaches.

Early attempts to recreate 3D structure using CNNs rely on volumetric approaches, filling a discrete 3D space from 2D inputs, creating an occupancy volume. Input from a series of images is compressed to a latent space, then expanded into a \gls{voxel} representation. The 3D space is divided into discrete cubes, either empty or occupied by the reconstructed model. Voxel approaches require more memory for the 3D upscaling section of the network and therefore tend to be lower resolution than their 2D input images. If the input image encoding does not contain any volume information - a surface rendering - then the interior of the resulting volume is undefined. Coupled with the fact that many of the voxels will be empty, volumetric representations are quite inefficient. \citet{gadelha3DShapeInduction2017a} use a voxel representation and a GAN (which they refer to as a \lq Projective Generative\rq\ GAN) to generate multiple 3D objects from a collection of 2D views. \citet{yanPerspectiveTransformerNets2016a} use an encoder-decoder network to generate a voxel representation from a single image. \citet{wangMultiView3DReconstruction2021a} use a transformer network to perform the same task, claiming their approach \lq uses fewer parameters than other CNN-based methods\rq. \citet{choy3DR2N2UnifiedApproach2016} combine an encoder-decoder network with an LSTM, creating a voxel-based reconstruction of various objects from one or multiple views.

\citet{xuDISNDeepImplicit2019a} and \citet{parkDeepSDFLearningContinuous2019} use \emph{signed distance fields} to represent the 3D surface. Given the position and pose of the camera, such a field can provide the distance from a pixel in the camera's view to the surface of the 3D object. The simplest example of a distance field is a sphere - equation \ref{eq:distancefield}. That is, the Euclidean distance between the a point on the imaging plane within the 3D scene and the sphere's centre, minus the sphere radius. A more complex signed distance field can be approximated using a simple, fully connected ANN.

\begin{equation} \label{eq:distancefield}
D_s = \sqrt{(C_x - S_x)^2 + (C_y - S_y)^2 + (C_z - S_z)^2} - S_r
\end{equation}

Point-based approaches produce a point cloud representation of the 3D structure. \citet{insafutdinovUnsupervisedLearningShape2018} predict a point cloud and the pose parameters combining both into a 2D silhouette, which is compared with a silhouette derived from the original input image. \citet{mandikalDense3DPoint2019a} use a \lq deep pyramidal network\rq\ to generate a hierarchy of point clouds, enabling more detail. \citet{linLearningEfficientPoint2018a} use an encoder-decoder network to create a number of \emph{depth maps}, which are passed through their \lq pseudo renderer\rq\ to create a dense point cloud.

\citet{uyJointLearning3D2021} present a deformation based approach which, when presented with an image, finds a suitable existing model and deforms it in order to best match the input. Such approaches rely on a good library of parameterised models.

Intermediation approaches break down the process of recreating 3D structure by generating intermediate data, that can be combined with further techniques to create a 3D structure. Pix3D \citep{sunPix3DDatasetMethods2018} is one such example; generating a normal map, depth map and silhouette from an encoder, passing all three to a second encoder-coder network to create a voxel representation.

The majority of the methods reviewed are tested and trained against the \emph{ShapeNET} dataset\footnote{\url{https://shapenet.org/}}, which contains a large number of annotated 3D objects. According to their taxonomy viewer, all the objects are human-made and exhibit no noise or deformation and are mostly surface models with no volumetric data. Conversely, biological structures viewed under a microscope frequently exhibit these features. 

\subsection{Challenges in Deep Learning}
\label{sec:aichallenges}
In their review of deep learning approaches in microscopy \citet{belthangadyApplicationsPromisesPitfalls2019} identify three broad problem areas: the \emph{hallucination}, \emph{generalisation} and \emph{adversarial fragility} problems. The first problem is somewhat synonymous to \emph{Pareidolia} - perceiving patterns when exposed to a stimulus, where no such patterns exist. Indeed, this effect has been taken advantage of for artistic purposes in the \emph{DeepDream} \gls{ANN}\footnote{\url{https://ai.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html}}. A neural network trained to minimise a particular loss will attempt to do so, regardless of the data passed to it. Deceptive artefacts in the data might seem plausible if no contradictory information is presented. Modifying or adding extra loss functions to increase consistency is one approach to minimise hallucinations, as seen in ANNA-PALM\citep{ouyangDeepLearningMassively2018b}.

The generalisation problem is concerned with creating a solution that can generalise to unseen data and still perform well, and not \emph{overfit} the data. The problem of overfitting is not limited to deep learning - many machine learning approaches can match the training data too well, resulting in poor performance on new, unseen data. Overfitting often occurs when an ANN has more \emph{capacity} for the task and begins to \emph{memorise} the inputs\citep{goodfellowDeepLearning2016}. Figure \ref{img:capacity} describes the relationship between capacity and generalisation. The larger and/or more complex the system, the greater the capacity and the tendency towards overfitting.

Overfitting can be detected by recording the loss on both the training data and a second set known as the \emph{test set}. This data is not used to update the ANN but to test how well the ANN can generalise. The two losses can be plotted and the resulting graph is essentially the same as figure \ref{img:capacity}. Replace the word capacity with training time, and generalisation error with test error and the same graph will emerge - we replace the dimension of complexity with time. Such a phenomenon is referred to as \emph{over-training}. Recording the losses over time and watching for this divergence, training can be halted or the learning rate reduced. 

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/capacity.png}
\caption{The relationship between capacity and error. The left side of the graph shows models too simple to solve the problem - they \emph{under-fit}. The right-hand side shows the opposite - \emph{over-fitting}. Taken from \citet{goodfellowDeepLearning2016}.}
\label{img:capacity}
\end{figure}


Underfitting is the opposite problem to over-fitting; where a neural network has failed to generalise due to lack of data, training time or architectural capacity. Often, DNNs require large amounts of training data. The ImageNet database\footnote{\url{http://image-net.org/}} - a dataset commonly used in image classification tasks consists of over 15 million labelled images. Such large datasets may not always be available. 

Adversarial fragility is the problem of small perturbations in the data giving rise to wildly different results. The \emph{DeepFool} algorithm shows that small changes to various pixels in an image to be classified - changes that are barely noticeable by a human - can completely change the decision made by an ANN\citep{moosavi-dezfooliDeepFoolSimpleAccurate2016}. These perturbed images are known as \emph{adversarial examples}. While DeepFool's focus is on ANNs that are classifiers, \emph{robustness} is something we consider in our deep learning experiments (Chapter \ref{chapter:expand}).

\citet{belthangadyApplicationsPromisesPitfalls2019} and \citet{montavonLayerWiseRelevancePropagation2019} raise the question of \emph{trust}; neural networks are often described as \say{black boxes} - their workings unknowable even to their designers. Unlike other machine learning approaches such as decision trees, the \emph{reason} why a deep learning system has made the choice it has made is very difficult to discern. \citet{montavonLayerWiseRelevancePropagation2019} present \emph{Layer-Wise Relevance Propagation} (\gls{LRP}) - a technique that propagates a classification back through the network, creating a heatmap that shows which parts of an image were responsible for this particular prediction \footnote{Review and software available at \url{http://heatmapping.org/}}. We return to LRP in Chapter \ref{chapter:expand}. \citet{samekExplainingDeepNeural2021} provide an overview of the various \emph{Explainable AI} (\gls{XAI}) methods one can apply to machine learning systems, presenting four families of techniques they view as exemplifying the field: \emph{interpretable local surrogates}, \emph{occlusion analysis}, gradient-based techniques and LRP. The authors highlight some of the difficulties in trying to provide explanations for DNNs. These include the non-linearity, multi-scale and distributed aspects of DNNs. For example, certain neurons may only be active for a smaller number of cases, whereas others may be global. \emph{Shattered gradients}\citep{balduzziShatteredGradientsProblem2017} - when the gradients across a network become small and highly variable resembling white noise - do not lead to useful explanations. Finally, the authors explain why finding a reference point on which to base an explanation is challenging, especially in the light of adversarial examples.

\section{The Pose Challenge}
We have briefly touched upon one key issue with reconstructing a 3D object from a projection - what is the \emph{pose} of the object in 3D space? Specifically, what is its \emph{translation} from the origin point of our Euclidean 3D space, and what is its \emph{rotation} around its local origin?

More formally, rotation is defined as the group $SO(3)$ - rotations about the origin of a Euclidean 3D space $\R^3 $ . Pose is defined as $SE(3)$ - the Special Euclidean group in three dimensions. This includes any combination of translation and rotation but excludes reflections.

All imaged structures have a pose relative to the viewer. Separating structure from pose is impossible when neither is known. When presented with a new dataset and a new structure to solve, any machine learning solution must contend with two interdependent unknowns - the structure \emph{and} pose, simultaneously.

A number of approaches for detecting the pose whilst discerning structure have been investigated. \citet{hendersonLearningSingleImage3D2020} use an encoder-decoder network, but split the output of the encoder into three separate streams: the latent space, lighting and pose parameters. These pose parameters are the probabilities that the structure is in one of a number of discrete categories over the azimuth angle only. \citet{xuDISNDeepImplicit2019a} use a CNN to predict parameters for translation and rotation, using the 6 variable parameterisation presented by \citet{zhouContinuityRotationRepresentations2019} for the rotation, while directly predicting the 3 numbers representing the translation. \citet{insafutdinovUnsupervisedLearningShape2018} use a split method where two images are sent to their CNN - one is used to predict structure, the other the pose. Rather than rely on a single pose prediction, an ensemble of \emph{pose regressors} are placed after the pose output from the CNN. Only the regressor with the highest accuracy on a particular datum is updated.

Predicting a good structure requires predicting a good pose (if neither are known) and vice versa. Some problems may require only a pose prediction as the structure is already known, or partially known. In other cases, the pose of the structure within the projection may be known to a certain level of accuracy (an example would be the \emph{C. elegans} neurons under a microscope almost always appearing with ASI to the left of the image - see Chapter \ref{chapter:worms}) but the structure may not be known exactly. Nevertheless, we begin by attempting to solve the problem of pose and structure simultaneously.

We hypothesise that a deep learning solution can solve both the pose and structure of a biological object given sufficient data and time. Furthermore, such a trained network should be able to detect the pose of such an object within a single 2D image. This will enable a deep-learning approach to labelling and segmentation that is \emph{morphologically aware}, leveraging any knowledge of the biological structure and give \emph{explainable} results.

The following final sections of this chapter describe in more detail, what segmentation and labelling, and why an automatic and explainable technique is desirable.
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\section{Labelling and Segmentation}
\label{sec:labelling}
In order to measure, quantify and perform reproducible analysis on (often) very large datasets obtained using a microscope, some form of automatic and reliable method of segmentation is desirable \citep{wahlbyImageSegmentationProcessing2015}. Segmentation is the process of dividing the pixels of an image into distinct groups that represent a feature of interest. 
In section \ref{sec:vision_microscopy} we mentioned that computer vision techniques have been employed in \emph{segmentation}. Figure \ref{img:ilastik} shows the segmentation results from the aforementioned program \emph{Ilastik} \citep{bergIlastikInteractiveMachine2019} - the pixels corresponding to the cells have been classified as such (We use \emph{Ilastik} in Chapter \ref{sec:nukeporeres}).

\begin{figure}[H]
\centering
\includegraphics[width=14cm]{images/ilastik.png}
\caption{An example from the program Ilastik. This image is segmented into two classes: background (in red) and cell (in green) - each pixel has one of two \emph{labels} therefore. The segmentation image is overlaid on the original (taken from \url{https://www.ilastik.org/gallery/full/Figure-2-c.png} }
\label{img:ilastik}
\end{figure}

When a group of pixels is identified as an object of interest we say that it is \emph{labelled}. The example in figure \ref{img:ilastik} has two labels  - cell and background - but it is not unreasonable to assume that each cell might be individually labelled - also known as \emph{instance segmentation}.

Fluorescence microscopy can be used not only to discern structure (described in section \ref{sec:flourescence_microscopy}) but to measure the amount of a particular chemical or protein in a particular area being imaged; images showing the light emitted from a particular fluorescent chemical used to \lq stain\rq\ the biological target we are interested in. The more light detected by the microscope, the more of our biological target exists in that particular location. By selecting the correct marker, we can measure the level of gene-expression in a particular cell, providing we can identify the cell within the image.

\subsection{Labelling \& machine learning: an example}
\citet{entchevGeneexpressionbasedNeuralCode2015} studied how the organism \emph{Caenorhabditis elegans} encoded information about food abundance via gene expression. Three neurons and two gene-products interacted in a complex way in response to temperature and food availability. In order to understand this network of gene-product interactions, enough information must be collected to statistically determine their dynamics with high confidence. This requires some form of high-throughput, automated (or semi-automated) image-processing of the data. 

\citet{zhanAutomatedProcessingImaging2015} present a machine learning approach consisting of a two-tiered classification system of support-vector-machines (\gls{SVM}s) and a number of computer vision filters. Their system takes a maximum-intensity-projection from a stack of \gls{bright-field} images and identifies both the gross orientation of the worm (by identifying the pharyngeal grinder) and a specific pair of neurons of interest. The disadvantages of this approach is that it requires somewhat standardised images; large changes in orientation of the worm will cause the algorithm to fail. Secondly, the algorithm as it stands at the time of writing, operates on 2D images only, resulting in an approximate quantification of the fluorescence. The resulting masks will either be smaller or larger than the true volume of the neuron in question, depending on the maximum-intensity projection.

Another approach to identifying neurons and quantifying the fluorescence is to use the watershed algorithm in conjunction with human selection. The watershed algorithm treats a grey-scale image as a topographic map, performing a \lq flooding\rq\ step, then \lq draining\rq\ noting which areas drain to which points, analogous to a geological watershed or drainage basin. Several algorithms and approaches exist to compute such watersheds including the priority-flood algorithm\citep{barnesPriorityFloodOptimalDepressionFilling2014}. 

Once a fluorescence image has been \emph{watershedded}, the regions corresponding to neurons of interest can be selected by a human, resulting in a labelled dataset of raw images and corresponding masks. The advantage of this approach is that it can easily be applied in 3D as well as 2D. The program \emph{Neuroshed}\footnote{\url{https://github.com/giovannidiana/neuroshed}} performs this process and is discussed further in Chapter \ref{chapter:worms}.

This approach has two key limitations however. First, the neurons are identified by hand, which is very labour intensive and second, the need for highly standardised images means many images are discarded. The first issue offers an opportunity to automate cell identification, either by applying supervised machine learning (e.g. a random forest classifier) to tens of thousands of annotated image stacks, or by using deep learning so that the algorithm can select the parameters to optimise. The second limitation implies that there are many un-annotated image stacks that were deemed unusable. With a suitable, automated solution, these images could be included, increasing the size of the dataset (and then cross-validated against the existing annotated subset to assess performance).

\section{The Labelling Challenge}

We began with considering why structure is important at multiple scales within biology. To determine structure we must be able to discern the pose. With an accurate structure and a neural network trained to detect the pose of this structure within an image, we can begin to label a microscopy image.

The previous example of understanding the gene-product network within \emph{C. elegans} relies on labelling a number of neurons within a large number of images. The location and size of all the cells within \emph{C. elegans} are well known, therefore any machine learning derived structure can be easily verified. 

Several difficulties will need to be overcome. The neural network we have described so far assumes that there is one structure to discern, but multiple viewpoints. This is not always the case when performing labelling. Secondly, the level of fluorescence in the labelling case is related less to the structure being imaged and more to the amount of target compound in a particular area. 

\section{Summary}

Deep learning has made great strides in many computer vision tasks, including many microscopy problems. Deep learning can derive 3D structure and pose from certain kinds of images with no prior knowledge of what is being observed.

Several approaches exist to determine 3D structure using microscopes, but each has a number of advantages and drawbacks. Common to many of these approaches is poor accuracy in the Z axis.

Deriving structure and pose can lead to labelling - knowing what is being shown in an image. Performing these steps automatically is invaluable when working with high-throughput imaging. In turn, this leads to greater understanding of biological systems.

We hypothesise that it is possible to derive 3D structure and pose from fluorescence microscopy images, at multiple scales, with no knowledge of the target. Furthermore, we believe that such a technique can be used to perform automatic, high-throughput labelling.

\clearpage

\subsection{Thesis layout}

The remainder of this thesis is organised as follows:

\begin{itemize}
    \item The description of our proposed solution to determining structure and pose in microscopy images: \emph{Hypothesised Object from Light Localisations}(HOLLy), and early experimental results.
    \item Further experiments with and details about HOLLy.
    \item Adapting HOLLy to the \emph{C. elegans} labelling problem.
    \item Conclusions and future work.
\end{itemize}
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\chapter{Discussion}
\label{chapter:conclusion}
We conclude this thesis with an overview of our approaches to solving general biological structures from 2D projections and the more specific labelling challenge. Our contribution to the fields of microscopy and computer vision are clarified. We suggest a number of improvements to this thesis and future directions that build upon our results.

\section{The Structure challenge}
Chapter \ref{chapter:holly} introduced HOLLy, a deep-learning system built to predict pose and structure in 3D, from a series of 2D images. HOLLy is built to reflect the underlying physical system, creating a structure that reflects the data, becoming sensitive to pose in the process.

HOLLy manages this by providing a continuous, smooth manifold for determining the pose parameters, whilst the points comprising the structure are slowly moved to the optimal positions. The advantage of using a deep learning approach over direct optimisation is that a smooth gradient (and therefore, a direction to progress) is available at any given stage of training, in proportion to the loss. Whilst early versions of HOLLy had some discontinuities in the rotation prediction, later versions took advantage of the \emph{6P} representation, removing these discontinuities and improving performance.

Once the structure has been found - when HOLLy converges on a solution - the neural network itself is no-longer required. Whether or not HOLLy has \emph{over-trained} is of no-consequence. Indeed, this typical deep-learning problem becomes an advantage when the desired result is not a network that can \emph{generalise} to unseen data, but provide the most accurate structure.

Nevertheless, HOLLy is able to predict translation, rotation and the level of blur (output-sigma) and generalise to unseen data, provided the unseen data depicts the same structure. Additionally, HOLLy can predict some amount of global scaling. Progressively applying ever more accurate pose predictions improves the structure. HOLLy has some tolerance to different kinds of noise, improved by output-sigma prediction. We began with predicting simulated data, using complicated objects. We verified our predictions against these known ground-truths, showing that HOLLy does improve its pose prediction over time.  We showed that we can recreate the CEP152 complex structure, the structure underlying glutamylated tubulin in centrioles and the toroidal structure in nuclear pores. 

HOLLy has a number of advantages:
\begin{itemize}
 \item HOLLy requires no templates or existing knowledge of the structure.
 \item HOLLy has some robustness to various kinds of noise.
 \item HOLLy is a general approach - if the images can be modelled with points of light, HOLLy can be applied.
 \item HOLLy can produce structures at different resolutions, given the number of points chosen (ultimately dependent on the amount of GPU memory available).
 \item Over-training does not affect the final result, as an accurate final structure is the desired outcome.
\end{itemize}

Reconstructing 3D structure from 2D images often requires knowledge of the target (often using a template) or classification of the input images by pose. 3D modalities often require specific hardware in the form of a particular microscope. Our approach is free of these constraints.

HOLLy has a number of limitations:

\begin{itemize}
    \item HOLLy cannot reliably predict \emph{handedness} without depth cues.
    \item A large dataset is required.
    \item HOLLy assumes a unique structure is responsible for all the images in the training set.
    \item The input-sigma scheduling must be chosen by the user (though this could be automated).
    \item The number of points in the structure and the image size is limited by computing resources.
\end{itemize}

The problem of \emph{handedness} - whether or not the predicted structure is mirrored in a particular plane - can be solved if any depth cues are available. Early versions with perspective and the later 3D-HOLLy do not suffer from this problem. However, depth cues are not always available in the dataset, and 3D-HOLLy is considerably slower to train.

Dataset sizes of the order of 40,000 items were deemed optimal. Smaller datasets impacted performance, with 8000 items proving too few in the simulated data cases. Augmentation can improve things considerably, as the simulated data experiments showed. 

Image sizes are quite small - often 128 pixels square. This keeps resources to a manageable level but does restrict the accuracy that might be obtained as finer detail present in the original data would be lost when the images are resized.

\section{The labelling challenge}

A successfully trained HOLLy instance can map an accurate structure to previously unseen image. We hypothesised this would allow us to \emph{label} this image, using our knowledge of the 3D structure. Such labelling would allow us to measure light intensity in different areas of the image, corresponding to structures of interest. The \emph{C. elegans} dataset was chosen to test this idea. We started by considering the current \emph{state-of-the-art} approach U-Net, before adapting HOLLy.

\subsection{U-Net}
The U-Net approach to labelling correlates well with counts derived using the original masks. While more complicated shapes such as interleaved classes and straight lines are poorly reconstructed, such shapes may not be accurate in the first place - indeed the straight lines found in the original masks are a direct result of the watershed algorithm and are not based on any particular characteristic of the data. When two areas meet, a decision must be made on where to place the border and a straight line is an acceptable compromise. However, it is also possible that in the case of two adjacent areas, both should have been selected by the \emph{human in the loop} as part of a neuron but only one was chosen, leaving an area with a straight edge, rather than a larger area with a more realistic border.

Indeed, the U-Net predictions are larger and more convex than these predicted using \emph{Neuroshed}. Nevertheless, the correlations remain strong once the background values have been subtracted correctly from both the originals and the predictions. A well trained U-Net can discern ASI from ASJ and return accurate counts of the luminance. In our research, U-Net could not separate the left and right neuron of each pair. It is not clear whether or not this is the consequence of the animal being in any number of unknown rotations about its anteroposterior axis, inconsistent labelling by the human technician, or a lack of discriminating features in the image.

\subsection{HOLLy}

When initially predicting 2D images, HOLLy recreated the sum projections from the \emph{C. elegans} dataset with reasonable accuracy. While the resulting structures appeared sensible, only two or three clear clusters emerged. A considerable number of the points in the predicted structure were spread across the volume, accounting for the out-of-focus light and any other background light or noise. Raising the background threshold improved the clustering, resulting in three clear clusters rather than the expected four.

This structure was classified using k-means clustering, resulting in a set of 3D masks. The same analysis as U-net was then performed - comparing the integrated intensity for the two pairs of neurons. Unfortunately, the intensities were not correlated. While the choice of mask threshold presented an initial hurdle, it appeared to be the lack of depth information that caused the poor predictions. The X-Y positions appeared to be well reproduced but the predicted Z positions were poor. In a number of experiments, 4 distinct clusters could be discerned, with resulting 2D images appearing to match the input data well. However, it remains to be determined if the alignment of the predicted structure is consistent enough to label ASI and ASJ.

This prompted the use of the 3D version of HOLLy - operating with the volumes directly, rather than projections. Early results predicted structures with some clustering, but a considerable number of points \emph{fan-out} from these clusters, representing the remaining out-of-focus light. Several approaches to remove or ignore this light were tested, but HOLLy could not reproduce a recognisable structure, or fit a suitable approximate structure to the volume correctly. The resulting masks did not match the originals and the correlations between the integrated fluorescence counts were poor. This was due to certain characteristics of the dataset which HOLLy does not model.

To conclude, the results across the different versions of HOLLy reflect biological circumstance; at smaller scales, as in the CEP152 experiments, structure is more tightly conserved. While many protein complexes change their structure as part of their function (such as the Calcium Pump, many kinds of receptors and many other complexes), they do so only under certain circumstances and within certain limits. Maintaining their structure is crucial to their function and therefore, crucial to the cells they are part of and support. In contrast, at the scale of a collection of cells - as in the \emph{C.elegans} experiments - each cell will have different positions relative to each other across individuals. While these positions do not change on a morphological level (the ASI neurons are always more dorsal than ASJ), their absolute positions within the body and their overall shapes, will differ between individuals. For example, the precise path a dendrite takes through the body of the worm is not as important as what it connects to, and hence is less conserved. HOLLy performs better when the shape and structure is assumed to be the same across the dataset.

\section{Improvements to existing work}

\subsection{Datasets}
A number of additional experiments would strengthen our case that HOLLy is general at particular scales. Despite presenting experiments from three separate datasets, more complicated objects could be tested. The CEP152 complex, glutamylated tubulin in centrioles and the nuclear pore complexes are largely symmetrical and of a similar scale. 

A significant amount of time was spent identifying images in the CEP152 data that did not show any clear centrioles - for instance when all the light in the image was reduced to a single point. Similar approaches were taken with the expansion microscopy data. In Chapter \ref{chapter:expand}, the nuclear pore data was not checked to a similar degree due to time constraints. Certain images did contain multiple pores and while this was recognised and accepted in order to test HOLLy's resilience to incorrect data, further experiments with a more consistent dataset could be attempted. Only one dataset was chosen from a large number of experiments included in the nuclear pore repository. Whether or not such experimental results could be combined to create a larger dataset for HOLLy to operate on could be investigated.

Deep-learning methods are limited by memory and compute availability. The majority of the memory usage is directly proportional to the number of points in the predicted structure - a problem exacerbated in 3D-HOLLy. Rather than hundreds of points, several hundred thousand points might result in a much more accurate and detailed structure; Chapter \ref{chapter:holly} noted that the CEP152 data consisted of tens of thousands of localisations per image. Some additional software development and optimisation might reduce the amount of memory needed.

Augmentation was applied to the the CEP152 centriole complex experiments in order to increase the dataset size and provide additional views of the structure. Care was taken to ensure such augmentations did not introduce artifacts, biases or estimations (for example, the centriole images were rotated only 3 times in 90 degree increments). Avoiding such problems while having a larger dataset is desirable. However, investigating the effects of missing certain views of the structure would help in deciding whether or not HOLLy can be used accurately on datasets with a strong bias towards particular orientations. This was briefly explored in the nuclear pore experiments with the bias towards \emph{top-down} views.

\subsection{Modelling}
Using a Gaussian \gls{PSF} in the differential renderer worked quite well. However we mentioned in Chapter \ref{chapter:worms} that not all PSFs are isotropic. Investigating different equations to represent anisotropic PSFs, particularly in the 3D version of HOLLy, might improve performance in certain cases. It might also be advantageous to represent individual localisation strengths. The CEP152 STORM data lists the intensity of each localisation, but such variation is not modelled in HOLLy. Modelling a unique intensity for each point may improve accuracy, at the cost of more compute time.

While a number of simulated noise experiments were undertaken with the 2D version of HOLLy in Chapter \ref{chapter:holly}, similar experiments were not performed with the 3D version. This was due to time constraints and prioritising other experiments. While it is hypothesised that the 3D version would not differ in its tolerance to noise - only differing in the number of dimensions it renders - this is not certain.

The input-sigma curves were chosen by hand for particular experiments. Although there are reasonable upper and lower limits, these limits are dependent on the data and the image-size. Experiments on larger images can tolerate larger sigma values, whereas smaller images would quickly be overwhelmed by large blurs. Automatic selection of the input-sigma curve based on the number of points and the image size could be implemented with a small amount of code and verified by experiment.

When working with the STORM data, the localisations were converted to images with a second program. Generating such images can take a considerable amount of time, depending on the size of the dataset and the number of localisations per image. Rather than working with images of the STORM data, it should be possible to work with the raw fluorescence data - or a simple derivative thereof - rather than an image derived from STORM localisations.

Chapter \ref{chapter:expand} suggested splitting the translation and rotation into two separate networks, combining the results from both in the differentiable renderer. Translation is quicker and easier to learn than rotation - separating into a smaller network with its own learning rate might improve performance. At some point, both translation and rotation must be combined in the differentiable renderer. There is a question around the ordering of the multiplications in the computation of the \gls{modelview} matrix - does the multiplication order of the rotation and translation matrices affect the accuracy? In a small number of experiments, there was some evidence that the order does indeed affect accuracy.

Many networks that predict pose and structure from a single projection use a separate network, or a split network to predict the structure as well as the pose parameters \citep{sunPix3DDatasetMethods2018, fahimSingleView3DReconstruction2021, katoNeural3DMesh2018}. HOLLy assumes a single structure underlies all of the underlying images in the particular dataset and therefore will attempt to incorporate any artefacts in that final structure. This can be seen in the nuclear pore experiment (section \ref{sec:nukeporeres}), where an additional protrusion can be seen attached to the torus. Being able to recognise multiple structures could be useful in certain experimental settings, and may improve accuracy on single predictions. Considering the aforementioned nuclear pore experiment, returning a torus structure for these images that only show a torus, and a second structure for these images with protrusions would be an advantage. However, adding a second network or second path to an existing network results in more parameters, which in turn requires more training data and time. However, training a neural network to predict structure rather than directly optimising a structure based on a pose prediction would remove HOLLy's major advantage - that when a structure is converged upon, the network is no longer required.

In the earliest stages, a projection matrix was included in the differentiable renderer as this is standard feature of a rasterisation pipeline. The projection matrix occurs after the modelview matrix but before the generation of \emph{\gls{normalised device coordinates}}, and is responsible for creating perspective effects. As there are no perspective effects in any of the imaging modalities we have investigated, this matrix transformation was removed. However, in light of the \emph{C. elegans} results, a projection matrix could be incorporated into the original 2D HOLLy model, providing depth cues that might improve that network's accuracy in the Z-Axis. The input data would also need to be modified using the same transformation, creating artificial perspective based on depth.

Modelling global scale increased the number of parameters the network needed to predict, but a corresponding increase in the model size was not undertaken. Indeed, investigating the size of HOLLy - for example, the number of fully connected or convolutional layers - was brief. The scale of the network was reduced until performance began to drop, but only at the beginning of our research. Altering the number and size of the various layers, investigating the effect on modelling scale would be an informative next-step.

The poor performance of the graph version of HOLLy was surprising, as rotation prediction performance decreased as training progressed. This was not investigated further as other approaches were judged to be more effective. Since the graph experiments were performed, both 3D-HOLLy and 6P rotation representation were tested. Applying both of these advances to the graph version might improve performance.

In our silhouette approach, an alternative loss function may improve performance. \emph{Power Jaccard Loss} is an extension to the Jaccard loss that heavily penalises incorrect classifications and is useful for highly unbalanced datasets \citep{duque-ariasPowerJaccardLosses2021}.

\subsection{Deep learning advances.}
Scheduling in the context of deep learning refers to altering the learning rate throughout training. Chapter \ref{chapter:expand} introduced the concept in order to reduce point movement when no further changes to the macro structure were detected. Scheduling could also be applied to the neural network learning rate in the later, 6 parameter version of HOLLy, possibly reducing training time.

It is possible to automatically set the learning rate. \citet{smithCyclicalLearningRates2017b} presents such a method by \emph{cyclically} changing the learning rate, rather than always reducing the learning rate over training, as normal scheduling does\footnote{A PyTorch implementation exists at \url{https://github.com/davidtvs/pytorch-lr-finder}}. While a small number of learning rates were tested early in HOLLy's development, further investigation on the later versions might improve performance.

HOLLy makes use of \emph{batch-normalisation} - controlling the means and variances of each mini-batch \citep{ioffeBatchNormalizationAccelerating2015a}. Recently, \citet{salimansWeightNormalizationSimple2016} introduced \emph{weight-normalisation} - expressing the weights of a particular \gls{ANN} layer as a combination of parameters including the Euclidean norm. Stochastic gradient descent is performed but on these parameters directly. The authors show an acceleration in convergence and lower computational overhead.

\subsection{3D}

The 3D version of HOLLy uses significantly more memory and takes longer to train than the 2D version. This is due partly to the naive implementation of the differentiable renderer. A number of alternative renderers are currently available - some were considered early in development but rejected to their emphasis on polygonal \gls{rasterisation} as oppose to point-based Gaussian rasterisation. Nevertheless some renderers may offer better performance, such as \emph{Differential Surface Splatting}\citep{Yifan:DSS:2019}.

Combining both the 2D and 3D differentiable renderers into a single model, using the combined loss from both to update the network might increase the accuracy of the pose and prediction. In the 2D version, the structure was adequately predicted but the Z position was not, whereas the opposite is true in 3D-HOLLy. Care would need to be taken in how the two losses are applied, to avoid a local minima where the network \emph{bounces} between competing solutions from each renderer.

Accuracy in reproducing scale in all three dimensions was never tested in the 3D version of HOLLy to the same degree as the original due to time constraints. Modelling scale appeared to have a negative effect on the structure reproduction.

The anisotropic resolution of the \emph{C. elegans} dataset, while compensated for with a scaling matrix, causes considerable artefacts when using augmentation - particularly when rotating freely in 3D space. The effect of these artefacts was never investigated. Reproducing a similar effect on a simulated dataset would be worthwhile, as anisotropic data is common in various microscopy-based experimental data.

\subsection{Labelling}

When the structure is already known, and the problem moves towards labelling, the emphasis shifts to the neural network part of HOLLy and the parameters it predicts. While rotation and translation seemed to be enough for the structure challenge, it could be argued that adding only scale is not sufficient to accurately represent the data. For example, in the \emph{C. elegans} case, an anisotropic scale matrix with a scale factor above 1.0 on the Z-axis, will stretch the individual neurons while increasing the distance between their centroids. A more sophisticated approach to fitting a known structure to a volume might involve predicting the parameter for a 3D displacement field. \citet{devosDeepLearningFramework2019} show that predicting a displacement field with a \gls{CNN} is possible in 2D when registering two images - one image is \emph{warped} until it matches another image.

We performed an analysis on the locations of the neurons, calculating the average distances between each one and the standard deviation. This showed that there is some variability between individuals. Analysis of the neuron shapes between individuals was not undertaken. A deeper investigation of the variability of the neurons would inform further development - what kinds of variations need to be modelled. 

The levels of fluorescence in each neuron varies considerably between individuals. HOLLy's ability to create a consistent structure when the intensity of certain areas of that structure vary has not been fully tested. When using simulated data, each point in the input structure has the same intensity. Varying this intensity on a point-by-point basis, particularly in identifiable groups (such as all the points in the Utah Teapot handle, or the points in the Stanford Bunny's left ear) would serve as a proxy for neuron structures that vary in intensity while the structure remains the same.

\subsection{Hyper-parameters}
HOLLy has a number of hyper-parameters, some of which had more attention paid to them than others. The key parameter is the learning rate, which appropriately received the most attention. The \emph{points learning rate} - or how far a point is moved in a particular direction at each step - could be investigated further, in order to fully understand the balance and relationship between pose and structure. 

The input-sigma scheduling could be made automatic. The highest value is largely dependent on the size of the image, as the Gaussian rendering is performed in pixel space. The smallest value can be no lower than 1.0, but is typically closer to 3.0 depending on the microscopy experiment that produced the dataset.

In the U-Net labelling experiments, the predicted classes (background, ASI and ASJ) were given specific weights. These weights were not changed througout the various experiments - their effects not fully explored. While de-emphasising the background is a standard approach when background voxels considerably outnumber voxels of interest, the exact values for the best performance have not been found.

\section{Future directions}

\subsection{Alternatives to point based structures}

An alternative approach to defining structure with points in 3D space is the \emph{signed distance field}. This is continuous function of varying complexity that returns the distance to a surface when provided with a point in space. Positive values mean the point is outside the surface, negative inside. Such a field can be well represented with a neural network. \citet{parkDeepSDFLearningContinuous2019} describe a deep-learning approach to learn such fields for objects such as the Stanford Bunny and objects from the ShapeNet collection. A related approach is the \emph{Neural Radiance Field}, such as NeRF\citep{mildenhallNeRFRepresentingScenes2021}. Rather than return a distance, the function returns the radiance at this point.

At the end of Chapter \ref{chapter:worms}, we briefly considered a \emph{graph-based} approach to the labelling challenge. Rather than attempting to map one domain to another, the loss could still be computed in pixel space but rather than moving each point in the structure individually, four groups of points could be moved representing the neurons. An additional set of parameters would need to be optimised - the distances between each group and scale parameters for each group. However, rotation would not need to be predicted. Such a network would need to predict a total of 25 parameters (if output-sigma is also predicted).

\subsection{Cyro-EM}
In Chapter \ref{chapter:introduction}, we described how our approach is different to the \emph{Fourier Slice Theorem} approach used to recreate structures in the CryoEM field. Predicting structures from CryoEM images with an approach based on HOLLy should be possible as the high-level problem - reconstructing a 3D model from multiple 2D projections - is the same. Rather than attempt to align images by finding the common line and iteratively refining, or classifying images for alignment against a reference, HOLLy  can perform template free structure prediction, so long as the renderer produces images that reflect the input. A problem we discussed in section \ref{sec:input_images} - having images only from a small number of viewpoints - is a problem that also occurs in CryoEM and would need to be overcome.

\subsection{Alternative architectures and training methods}
The size of the dataset HOLLy requires to produce an acceptable result is considerably large. Augmentation was one solution we considered - another might be \emph{pre-training} or \emph{transfer-learning}. Broadly, transfer-learning involves training a network on a different dataset, followed by further refinement on the target dataset. The hypothesis is that the both datasets have similar characteristics, many of which can be learned from the first dataset, with the finer details related to the original problem learned from the second. \citet{panSurveyTransferLearning2010} survey a number of transfer-learning techniques, concluding that the main challenge is identifying whether or not two datasets are suitable for transfer learning.

In the case of HOLLy, transfer learning could be used in \emph{pose-only} mode, where a number of different structures are provided and only the pose is predicted. Training HOLLy in this mode on many different underlying structures might result in a network that can predict good poses for many structures. HOLLy could then be switched to predicting pose \emph{and} optimising an unseen structure, already trained to detect pose from many other structures, but whether this predicted structure would be more accurate, or more quickly converged upon has not been explored.

HOLLy uses a standard architecture combined with a custom differentiable renderer. Chapter \ref{chapter:holly} referred to a number of existing differentiable renderers but stated that none were fit for representing points of light - PyTorch3D (and other similar approaches) were deemed unsuitable due to a focus on polygonal meshes. However, some ideas from these approaches could be useful in improving performance - \citet{liEndtoEndLearningLocal2020} approximate the traditional rasterisation pipeline by using \emph{\lq aggregated probabilities\rq} derived from the underlying point cloud. Rather than computing the Gaussian directly, we might introduce such an approximation in HOLLy, hopefully reducing the amount of memory required. Recall that the memory usage for the differentiable renderer is dominated by the number of points, multiplied by the image size.

\subsection{Improving U-Net labelling}

Rather than using a CNN to directly label neurons, \citet{parkAutomatedNeuronTracking2022} use a CNN to track a human-labelled neuron through worm movement. The neural network effectively learns deformation. Such an addition to our U-Net approach may improve performance.

Section \ref{sec:lrp} introduced \emph{Layer-wise Relevance Propagation} - a method for understanding why a deep learning network made a particular classification. While not particularly informative for HOLLy, such an approach would be more appropriate for U-Net and the \emph{C. elegans} labelling problem. 

Our U-Net implementation takes a considerable amount of time to train, though predictions are relatively quick once training has been completed. Alleviating the long training time through larger \gls{GPU}s or model optimisation would permit further experiments and refinements to the model. In comparison to HOLLy, only a small number of U-Net experiments were undertaken (15 compared to over 1000). Only a small number of dataset derivations were tested.

For acceptable U-Net performance, the classes must be weighted, with the neuron classes being considerably higher than the background. The exact values of these weights were never fully investigated due to time constraints - larger weighting towards the neurons may or may not improve performance.

\subsection{Advances in deep learning}
Since work began on this thesis, there have been several advances in the field of artificial intelligence, many of which might be useful in improving HOLLy's performance. One major advance is the introduction of the \emph{Transformer} - a new architecture for building neural networks\citep{vaswaniAttentionAllYou2017a}. Initially applied to \gls{NLP} problems - traditionally solved by \gls{RNN}s - Transformers have recently seen success in computer vision tasks\citep{dosovitskiyImageWorth16x162021}\citep{carionEndtoEndObjectDetection2020}. The Transformer architecture uses an \emph{encoder-decoder} architecture at its heart but differs by using an \emph{attention mechanism}. Crucially, the position of each input datum, relative to the other input data is encoded along with the data itself. At each decoder step, a series of attention weights are generated that affect the final output of each decoder layer. In an NLP task, each word of a sentence - or token - will have a set weights reflecting the importance of the word in the context, and which other tokens are relevant to that particular word. In a computer vision task, one approach is to break up an image into patches. Each patch has a position in the image, relative to the others and so forms a token. 

Throughout our research, we relied on the \emph{Adam} optimiser. Since the beginning of our research, newer Second-order derivative based optimisers such as \emph{Shampoo}\citep{anilScalableSecondOrder2021}, or gradient-approximator optimisers like \emph{K-FAC}\citep{martensOptimizingNeuralNetworks2020} have been shown to reduce the time to convergence in Transformers and classification tasks.

\subsection{Scaling up}
Many of the experiments we performed were limited by the resources available. The number of points, 3D versus 2D, the image sizes - all are limited by the amount of \gls{GPU} memory available. In many experiments, we scaled down the input images, producing correspondingly small predictions. More compute resource would speed up training, allowing for experiments with much larger datasets. While almost perfect results on 2D simulated data were obtained with the resources available, the 3D experiments were particularly hampered. The datasets in this thesis typically contain small images - the smallest being 60 pixels square, the largest being 200 square. Datasets with larger images could contain more detail, but would be slow or impossible to reproduce without larger GPUs. Investigating HOLLy's performance on larger images would be a useful step forward.

\section{Conclusion}

We have shown that it is possible to predict a 3D structure from a number of 2D images of a protein complex, using a deep-learning approach. Our program HOLLy is general - it requires no template or other knowledge of the target. We explored the limits of HOLLy by looking at variety of different structures, altering various parameters to simulate noise, missing or additional fluorophores and altering the sizes of the training sets. We found a set of conditions that must be met to obtain adequate results.

Going deeper, we looked at a variety of issues that affect deep-learning approaches generally, as well as specific issues with HOLLy. We identified a number of interesting results, the reasons for these results and possible mitigatio - scheduling the learning rate when the structure ceases to change at the macro level for example. Based on recent work, we changed our rotation representation, confirming the conclusion that a representation without discontinuities gives better performance. We looked at scaling as an additional parameter, concluding that HOLLy could not represent arbitrary scaling except under particular circumstances. HOLLy was tested against an additional dataset - the nuclear pore complex - and achieved good results.

Having a network sensitive to pose and an accurate structure led to the challenge of labelling - identifying objects of interest within a 2D image or 3D volume. This is desirable as any decision made by the network is done so with knowledge of the structure and a pose prediction only - any result is explainable and easily verifiable. As a comparison, the existing \emph{state-of-the-art} deep learning approach was also tested - a CNN classifier. The classifier outperformed HOLLy on the \emph{C. elegans} dataset. We described processes required to format the data for use with HOLLy and the classifier. HOLLy managed to predict and place a structure that gave reasonable results but only in the X-Y plane; the lack of depth (Z) information in the renderings made any accurate measurement of the fluorescence impossible.

Finally, we have shown that a modest CNN-based neural network with a differentiable renderer can recreate 3D structure from 2D super-resolution microscopy images. 
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Understanding the structure of a biological system is crucial in determining its function. From protein complexes to animal organs, structures of various scales play key roles in all organisms, with many having complex 3D shapes. However, retrieving accurate 3D structures from images is highly challenging, particularly as many imaging modalities are two-dimensional. Recent advances in Artificial Intelligence have been applied to this problem, primarily using voxel based approaches to analyse sets of electron microscopy images.

Here we present a deep learning solution for reconstructing the protein complexes from a number of 2D single molecule localization microscopy images of a nanoscale biological complex, with the solution being completely unconstrained. Our convolutional neural network coupled with a differentiable renderer predicts pose for each 2D image and derives a single 3D structure, becoming sensitive to the structure's pose within an image during the training of the network. 

This ability to correctly predict pose in an image is then used to label specific areas of interest within a series of images. We demonstrate the applicability of this approach at a much longer lengthscale, that of a whole organism. Using the stereotype cellular anatomy of \emph{C .elegans} as a test case, we are able to apply our method to the challenge of labelling specific neurons in 3D images and benchmark it against other standard approaches.
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